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Abstract. We consider the quantum nonlinear Sidfinger equation in one space and one time
dimension. We are interested in the non-free-fermionic case. We consider static temperature-
dependent correlation functions. The determinant representation for the correlation functions
simplifies in the small-mass limit of the Bose patrticle. In this limit we describe the correlation
functions by the vacuum expectation value of a boson-valued solution for Maxwell-Bloch
differential equation. We evaluate long-distance asymptotics of the correlation functions in
the small-mass limit.

1. Introduction

In this paper we consider correlation functions of exactly solvable models. Our approach is
based on the determinant representation of quantum correlation functions [1]. We consider
the thermodynamics of Bose gas with delta-interaction at finite temper@tuse0. The
one-dimensional Bose gas with delta-function interaction is described by the canonical Bose
fields v (x) and T (x) with the commutation relations:

[v(x), vT (] =8(x —y) [v(x), ¥y =¥ ), ¥ (»] =0. (1.1)
The Hamiltonian of the model is
1 0 d
H = /dx <2maw+(x>w(x> + g T (YT ()Y ()Y (x) —hlﬁ+(X)1ﬁ(x)) (1.2)
X 0x

wherem > 0 is the massg > 0 is the coupling constant and > 0 is the chemical
potential. The HamiltoniarH acts on the Fock space with the vacuum vedtaic). The
vacuum vectotvac is characterized by the relation:

¥ (x)lvag = 0. (1.3)
The dual vacuum vectowad is characterized by the relations:
(vadyt(x) =0 (vac|vag = 1. (1.4)
The corresponding equation of motion
2
=T H ==y b+ 200y — (15)
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5106 T Kojima and V Korepin

is called the quantum nonlinear Sédinger equation in one space and one time dimension.
The quantum field theory problem is reduced to a quantum mechanics problem. It is well
known that in theV-particle sector the eigenvalue probléfyy) = Ex|yy), is equivalent

to that described by the quantum mechanicbody Hamiltonian

1 X g2

HN - - 72
2m =1 0z

+2g Y 8(u—2z)— Nh. (1.6)
1<j<k<N

Lieb and Linger [2] solved the eigenvalue probletiyyvy = Eyxy¥y. They constructed

the eigenfunctionsyy = v¥n(z1,...,2nlA1,...,Ay) by means of the Bethe ansatz.

The eigenfunctiomyy = ¥n(z1,...,2nlA1,...,Ax) depends on the spectral parameter

A1 < -+ < Ay. The spectral parametels < --- < Ay are determined by the periodic

boundary conditions:

YnQ@EL .z + Lozl AN) = UNQ@EL s 2y e N AN) (1.7)
which amounts to the Bethe ansatz equations:
N .
; Aj—hp + 2i
e.ij:_Hﬂ j=1...,N. (1.8)

io1 M — A — 2img

Here L > 0 is the size of the box. The eigenvalue of the Hamiltontan is given by

N
Ey = Xl: (2’111)\;1 - h) . (1.9)
J=
Lieb and Linger [2, 3] discussed the zero temperature thermodynamic limit. The ground state
and its excitations are described by linear integral equations. Yang and Yang [4] discussed
the finite-temperature thermodynamic limit. The state of thermodynamic equilibrium is
described by nonlinear integral equations. The density of partiglés and the density of
holespn() are described by the following nonlinear integral equations:

2p) = 1+ [ KO a0 o (1.10)
N oo
D=+= / pp(p) du (1.11)
e(\) = )‘i —h— r /oo K, win (14 e /Ty du (1.12)
2m 27 J_ ’ '

whereT > 0 is temperature an@ = N/L is the density of particles. Here the functions
g()) andpy (1) are defined by

P _ @0 () = ppli) + o). (1.13)
Pp(X)
The integral kerneK (1, w) is defined by
dmg
(r — w2+ (2mg)?

Consider the local density operatpix) = ' (x)v (x). In this paper we consider the mean
value of the operator

exp(@Q(x)) . (1.15)

K, p = (1.14)
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Herewx is an arbitrary complex parameter a@dx) is the operator of the number of particles
on the interval [0x]:

o) = fo Ut dy. (1.16)

We are interested in the generating function of the temperature-dependent correlation
function defined by

_ tr(exp(—H/T)exp(axQ(x))) '

@@ == (1.17)

The expectation valuéexp(a Q(x)))7 iS a remarkable quantity, because many interesting
correlation functions can be extracted frof@xp(e Q(x)))r. For example, the density
correlation function

_ (©Xp(—H/T) j(x)j(0)

[(x)j(0)r = 1.18
(j(¥)jO)r T @A/ (1.18)
can be derived by
1 92 ) 19?2 92
(x) ] =_-— =-— — . 11
G@JO)r =55 3000 = 555 jpa@PE@CN)r| . (119)
In this paper we are interested in the small-mass limit of the Bose particle:
m—0, g > o0 such that the product = 2mg is fixed. (1.20)

We want to emphasize that the small-mass limit is not a free-fermionic limit. The scattering
matrix of the particles., and A, is equal to

S(Ap, An) = exp(—id(Ap, An)) Ap > An (1.21)

where the scattering phasesatisfies the following integral equation:

1 o . ic+ Ay — An
8(Ap, An) — o / K (Ap, ) ()8(p, An) =1iln (Ic)up%—)m) . (L.22)
—00 — Ap

Here we used

1 i Pp(A)

P (1) = = _
W =1 e pr(h)

(1.23)

Therefore the small-mass limit is not a free-fermionic limit. In the small-mass limit we will
show that the expectation valuexp(«¢Q(x)))7 is described by the vacuum expectation
value of a boson-valued solution of the Maxwell-Bloch equation [5]. The plan of this paper
is as follows. In section 2 we summarize known results of determinant representations
for correlation functions. In section 3 we consider the small-mass limit of temperature
correlation functions. The determinant representation for correlation functions simplifies in
the small-mass limit. In section 4 we show that correlation functions can be described by
the vacuum expectation value of a boson-valued solution of Maxwell-Bloch equation, in
the small-mass limit. In section 5 we evaluate asymptotics of the correlation functions in
the small-mass limit.
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2. Determinant representation with dual fields

The purpose of this section is to summarize the known results of the determinant
representation for temperature correlation functions [1]. First, we introduce the dual fields
o;(V), (j=1,...,4) defined by

o) =p;V) +q;(0) j=1...,9. (2.1)
Here the fieldsp; (1) andg; (1) are defined by the commutation relations
[pi V), ()] =[q;(A), x ()] =0

(., k=1,..., 4). (2.2)
[PV, qx ()] = Hj (X, )
Here we used
-1 0 0o -1
H O 1) = - In (b, 1))
j,k ) I’L - 1 0 _1 ’ I'L
O -1 1 -1 ik
-1 0 1 0
I e TN (2.3)
0 1 -1 1 H '
-1 0 1 -1 ik
where
1 .
h(h, u) = E(A_M+Ic)' (2.4)
The dual fieldsp; (1) commute:

We introduce the auxiliary Fock space with the auxiliary vacuum ve@orThe auxiliary
vacuum vectoiQ) is characterized by

piM10) =0 (G=1....9. (2.6)
The auxiliary dual vacuumO| is characterized by
(Olg;(») =0 (G=1....9 (010)=1. (2.7)

We want to emphasize that the dual fiegJ$x) (j = 1, ..., 4) and the auxiliary Fock space
can be written in terms of the four standard Bose fiefgé.), 1//,*(#), (G=1...,4 and
the standard Fock vacuuf@) and the dual Fock vacuur®|:

[V 0, ¥ ()] = 8,48k — 1)
[v; O, v ()] = [ (), ¥ 0] = 0

¥;(M)[0) =0 <0|1#,~+(>») =0. (2.9)
Actually, the dual fields can be realized by

} Gok=1,...,4 (2.8)

4 00
pi() = ¥; (1) () = Z/ Hy (v, ;" (v) dv (ok=1....4. (2.10)
=1~
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Next we prepare two integral operatdrs and K. The integral operatoV; is defined by

(V)00 = [ VG0 £ 0 du. (2.11)

—0Q

The integral kernelVy (A, u) is defined by producVry (A, u) = V(A, w)d (). The first
factor V(A, n) is defined by

1 .
VO = Ht()», 1) + 1 (i, 1) exp(—ix(h — 1) + d1(p) — Pp1(1))
+ exp(a + ¢3(r) + ¢a(i))

X (11, 2) + 10 ) €XP(=ixX (G = ) + 6200 = 92(11)))} (212)
where
(ic)?
=R —p+ic)
We call the second factat () the Fermi weight:

1 _ Pp(2)
14+e®/T — p(n)’

t(h, 1) = (2.13)

D (\) = (2.14)
Because the dual fieldg;(A) commute with each other, we can define the quantity
de{1+ (1/27)Vr). The integral operatoK; is defined by

oo

(Ierf> () =/ Kr(h, ) f () duc. (2.15)

The integral kerneK (A, w) is defined byK7 (A, u) = KA, u)d(n). K(i, n) is defined
in (1.14). Now we state the results which we will use in the following sections.

Theorem 2.1 (Korepin [6])In terms of the dual fieldg; (1) (j =1, ..., 4), we can express
the expectation valuéexp(a«Q(x)))r by the Fredholm determinant:

() det(l + (1/2n)x7T) 0)
(expa@Q(x))r = . (2.16)

det(l - (1/2n)1€T)

Here the symbol dé1+ (1/271)\77) represents the Fredholm determinant corresponding to
the following Fredholm integral equation of the second kind:

(<1+ ;VT) f) ) =g for 1 € (—00, 00). (2.17)

The denominator d(al— (1/27r)13T) represents the Fredholm determinant corresponding to

the following Fredholm integral equation of the second kind:

((1 _ Z:l-rkT> f) ) =g for 1 € (—00, 00). (2.18)
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3. The small-mass limit of the Bose particle

In this section we will show that in the small-mass limiz — 0, g — oo, such that
¢ = 2mg is fixed, a simplification occurs. As explained in the introduction, the scattering
matrix depends on the produet= 2mg, and not just org. Therefore the limit of small
mass is not a free-fermion limit. We want to emphasize this point. In the sequel we consider
the limit of small mass. First we evaluate the solution of the Yang—Yang equation.
22 r (= /T
eAM)=——h— — KO, win(1+4+e** du. 3.1
W= —h=5 [ KG.w( ) du (3.

This is done following [4].

Lemma 3.1In the small-mass limit of the Bose particle, a solution of the Yang-Yang
equation (3.1) is evaluated as

)\‘2

e(L) = o h+ O(/m). (3.2
Proof. In [4] Yang and Yang derived the following inequalities:

22 e

o —h =800 > o 4 x (3.3)

wherexg is defined by the integral equation

T [ 1/ u?
xoz—h—gﬁm KO, 1) In <1+eXp<_T<gm +xo>>> du. (3.4)

The existence ofg is proved in [4]. Let us change the integration variable te w//2m.
In the limit of small mass,/cg tends tooco. Therefore we obtain

T [ Jcg 2
=—h—— NP In(14+e@0/T) ¢ 3.5
o= [ ar e (re ) @ @3
T oo
= —h+xo— 7/ V% (efo/T +e‘”2/T) dv (3.6)
T J oo ()2 + 12
T 1 R 2
- —h-__— — (v +x0)/T
= —h— cgf_oo/_wm(ne )dv+O(m). 3.7)
When we assuméxg| — oo, this contradicts (3.6). Therefore we can assume [thzatis
bounded. Therefore, from equation (3.7), we can dedygce —h + O(\/m). O

From lemma 3.1, we can evaluate the Fermi weigtit). The Fermi weight? (1) has
a very sharp maximum at = 0, from which it decreases very rapidly to 0. Therefore
a simplification occurs. First we consider the dual fields. In what follows we consider
the case where the spectral parameters are restrictedto~ O(/m). We observe the
simplification of the commutation relations:

0 0 -1 -1
0 0 1 1 i

[pi (M), q(w)] = 1 -1 0 o0 (= 2) +0(m). (3.8)
1 -1 0 0

Jj-k
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Therefore we can identify pairs of fields:

p1(A) = —p2(A) p3(A) = pa(r) (3.9)
q1(A) = —q2(2) q3(A) = qa(A) (3.10)
d1(0) = —¢2(A) $3(A) = ¢pa(M). (3.11)

Furthermore, because the first term of the commutation relation (3.8) is a linear function
of the spectral parameters, we can choose a representation of the fields sugfixthate
linear functions of the spectral parameter

¢;(A) = ¢;(0) + ¢;(0)A
#;(0) = p;(0) + ¢;(0) (G=13. (3.12)
¢:(0) = p;(0) +¢;(0)

Here the commutation relations are

[1;(0), c(0)] = 0= [p;(0), ¢;(0)] (J, k=13 (3.13)

[P1(0), g3(0)] = é = —[p3(0), 1 (0)] [P3(0), ¢1(0)] = é = —[p10), q5(0]. (3.14)
The actions on the auxiliary vacuum are
p1(0)|0) = p3(0)|0) = p1(0)|0) = p3(0)[0) =0 (3.15)
(0lg1(0) = (Olg3(0) = (Ol}(0) = (Olg4(0) = O. (3.16)
Furthermore, we arrive at the following formula.

Theorem 3.2In the small-mass limit of the Bose particle, the expectation value of the
Fredholm determinant simplifies as follows:

1. N
(] det<1+ VT> 0) —> (O] det(1+ VO,T) 10). (3.17)
2
Here the symboVo,T is the integral operator defined by
(Vorr) @)= / Vor Gha i) f (1) de (3.18)
where the integral kernel is defined by product
¢ — 1\ sinit(h — ) w h
Vor(h, ) = 2 O ,— 3.19
o e ) (n) (a7 (319)
where
Yo, B) = ——5—. 3.20
olu, B) 14 ef ( )
Here we used the abbreviations
a=a+a,+a, T=x+x,+3% (3.21)
a, = 2p3(0) a, = 2q3(0) x, = —ip1(0) X, = —igq(0). (3.22)
The commutation relations and the actions on the auxiliary vacuum become
SN 2 . 2
A (3.23)
%,10) = 0= &,|0) (0%, = 0= (0|a,. (3.24)

The dual fieldsx andx commute with each othera[ x] = 0.
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Proof. From lemma 3.1, the Fermi weigl#t(1) has a very sharp maximum at= 0 and
decreases very rapidly to 0. When we consider the integral opeffatowe can restrict

our consideration to the case of the spectral paramétens~ O(,/m). Therefore we

can use the above dual fields simplification. We can identify four dual fields to two dual
fields, which are linear in the spectral parameterg. Furthermore, since the relations
[P3(0), $1(2) — d1(w)] = 0, [g5(0), p1(1) — ¢1(w)] = 0 and (0|g3(0) = 0, p3(0)[0) = O

hold, we can drog;(0), ¢4(0) in the expectation valug0| det(1 + (1/27)Vr)|0). Next

we perform a similarity transformation e@ik(x — iqﬁ’l(O))) which leaves the Fredholm
determinant invariant. Finally we substitute the Fermi wei@ht) by the modified Fermi

weight do(u/~/2mT, h/T). We get the desired formula. O
The denominator of the expectation value (2.16) becomes the following one:
1. 2T h
det(l - KT) 1Yy, () i+ O(m) (3.25)
2 TC T
where we used
dp) = / Do, B) duc. (3.26)
The densityD can be written as
N o0 Y 1
D = 7= / pp(p) du = — du + O@m). (3.27)

27 J oo 1+exp(% ("E2 - h))

Therefore we can write
1. 2
det(l— KT) =1-—-D+O@m). (3.28)
2 c

Therefore we arrive at the simplified formula for correlation functions.

Corollary 3.3.1n the small-mass limit of the Bose particle, the temperature correlation
function simplifies as follows:

R 2
(exp(@0(x)))7 —> (O] det(l + VO,T) 0) (1 + cD) . (3.29)

Here D = N/L is the density of the thermodynamic limit.

4. Maxwell-Bloch differential equation

In this section we consider the differential equation for the temperature correlation function
in the small-mass limit of the Bose particle. In the small-mass limit, the Fredholm
determinant déﬁ + VO,T) is a r-function of the Maxwell-Bloch equation, taking values

in a commutative subalgebra of the quantum operator algebra. It can easily be seen that
after introducing new variables, the auxiliary fieldand the scaled chemical potentfal

~ n R mT R mT R mT h
Y=Y+t y=y5x Y=y 5 % Yo =y 5 % /3=?

4.1)
the Fredholm determinant c(&t+ VO,T) can be rewritten, after the corresponding change

A — A/~/2mT of the spectral parameter, as

det(l + VO,T) - det(l - yvi/) )ﬁ:(l_exp(&))/n : 4.2)



Maxwell-Bloch equation and correlation functions 5113

We want to emphasize th4tis an operator in the auxiliary space. The integral opergtor
is defined by

(Wf)@%j/ Wk, ) f (1) dut (4.3)
where the integral kernéV (A, ) is given by
90
‘WLm=§%%;@%Wﬁ) (4.4)

The algebraic structure of the Fredholm determinantldety W)|f:(1_exp(&))/7, has been
investigated in the context of correlation functions for the impenetrable Bose gas [1]. It is
convenient to introduce the functien defined by

5..) = Indet(1- 7)) .
o (5.5.4) V) s=a-expayn

The operators satisfies the Maxwell-Bloch equation in the case theand @ are real
numbers [1]. In our casey and & are quantum operator, but due to the fact that they
commute with each other, we can follow the derivation in [1]. Therefore we arrive at the
following results. In what follows we use the following operator-derivation notation:

(4.5)

d . 0
—FQ) = —F@©) (4.6)
8y 0z =5

where F = F(z) is a function ofz.

Proposition 4.1.The operatoro(y,8,&) = Indet(l — ?W)W:(l_exp(&))/ﬂ obeys the

following nonlinear partial differential equation:

2 \2 2 2
(55o0) ==4( 0 ) (Do + (o) —200) @)
% 95 0527 )\Fopas” T \apas”) ~%ap

with the initial conditions
N N 2
1—¢& 1—é* $2
a=—(am)9—<dw»'y+0@% (4.8)
T T 2

im0 (5. .8) =0 (4.9)

where the scalar functio(g) is defined in (3.26).

These initial data fix the solution uniquely. The nonlinear differential equation (4.7)
is called the Maxwell-Bloch equation [5]. Algebraically, it is known that7at= 0 the
operatoro depends only on product of variablgs/g [6]. We sett = y./B = V/mh/2X.
Equation (4.7) is rewritten df = O for the operator

d .
oo(r) = 7 In det(l - yW) (4.10)

y=(1—exp&)/n

d20'0 2 dUo dO’o dGo 2
20 =g =2 = 4 — — ) —4op]. 411
(T dr? ) (’ dr “0) i ( dr ) 0 4.11)

This ordinary differential equation is the fifth Paing2equation in [7]. Actually, rewriting

(4.11) in terms of the functiomy(r) defined by

uo(7)? 2 4ityo(t) — tdyo(r)/dr
(yo(r) = 1 uo(7) =

yo(@) ° ° 2(y0(r) — 1)2

as

oo(t) = —4ditup(r) + (4.12)
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we can get the familiar formula of the fifth Painkwifferential equation for the function
w(t) = yo(50):

d?w dw\? 3w-1 2w(w+1) 2w ldw
= (= el 4.1
<dr> 2w(w — 1) w—1 + T T dr (4.13)

Next we derive the asymptotics of(y, 8, @) = Indet(1— ﬁvf/)h;:(l_exp(&))/ﬂ. By means of

the Riemann—Hilbert method, the asymptotics-ofire derived for the case whefeand&

are real numbers [1]. The idea of the Riemann—Hilbert method is due to Pnofessdis.

In our casey anda are quantum operators, but due to the fact that they commute, we can
follow the derivation in [1]. We arrive at the following asymptotics.

Proposition 4.2.The asymptotics of the operatar(y, 8, a) for large y become the
following:

o . 1 (B rac.a)\?
a(y,ﬁ,a>=—yc<ﬂ,a>+2/w< gbo‘)) db

BRI,
8r1(6@)* la(r1(&), &)

2 €Xp(—4r1(&) sing1(@) 3)

1
X <sm2¢q(&) + COS{4)A”’1(&) COS§01(&) -4 arga(kl(&), &) - 4‘;01(&)})

+ 0(exp(—4r1(&) sing1(@) 3)). (4.14)
Here we set
1 [ 14 e’F
C(p.a) = f_oom (W) du (4.15)
(@) = Vo + B+ i ri(a) = [A(a)| p1(a) = arghry (@) (4.16)
B 1 [ du 1+ ep
a()»,a)_exp{zni/oou_kln (e‘*+eﬂ2—ﬁ)}' (4.17)

5. Evaluation of the mean value

In this section we evaluate the vacuum expectation value of the operatclt -det
PW)lp=(—expayx fOor y = /mT/2x — 4o00. From corollary 4.2, we deduce

] det(l— ;ﬂi/)) 0)

y=(1-expa))/n
= (0|A(B, &)e CPDT 1 B(B, &) exp(—{C(B, &) + 4r1(&) Sinp1(@)}5)
+G (B, @) exp({—C(B, &) + 4ir1(@)}3)

+ H (B, &) exp({—C(B, @) — 4ir;(@)}3) 0) + - - - . (5.1)
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Here we set
3 1 (f (9CHh,a)\>
AB,a) = exp{Z/_m< 55 ) db} (5.2)
BBay——. €~ <“W{(°‘)’ “)>2A<ﬁ ) (5.3)
= 8ri(a)*sir? p1(a) \a(ri(@), o) ¢ .
(e =12 1
G, o) =~ 16 M(a)“a(kl(a),a)“A(ﬂ’a) (54)
—a 2 * 4
Hpoa) = — & D ahil@ 0T, ) (5.5)

16 As()4
where C(B, @), A1 (a), ri(a), p1(a) and a(r, o) are defined in (4.15), (4.16) and (4.17).
A3 () is the complex conjugation df;(a), i.e.

i) =Va+p—mi (5.6)

H(B, @) is the complex conjugation aii (8, «).

In this section we evaluate the right-hand of the above vacuum expectation value. For the
convenience of the reader we summarize below the commutation relations of the quantum
operators:

R R R mT mT R mT
Yy=y+¥+J Y=l 5% Ip =1/ 5% Vo =1/ 5 %¢ (5.7)
2 2 2
h

a=a+a,+a, ﬂz? (5.8)
o A ~2mT A s . . . .
[yp’ aq] = T = [ap’ yq] yp|0> =0= “p|0> (Ol)’q =0= (0|Olq. (59)

The following proposition is the key to calculating the vacuum expectation value.

Proposition 5.1.The following asymptotic formula holds at large— +o0:

vemT

c

(01e"FD F@)|0) = F (a + E(a)) et .. (5.10)

Here E(«) and F («) are meromorphic functions ef.

Proof. In this proof we use the following abbreviations:
vamT
C

First we expand the exponential function and use the relaf0iis = 0, &,/0) = 0 and
[¢&p, &;] = 0. We obtain

S =

Ao+ A1d, + Asd,)> + - = E(@ + &,). (5.11)

1
EV := (0|F(&) exp{3E (&)} |0) = (0| § SO+ )" (E(o + )" F(@)]0). (5.12)
n=0 """

We expand
(E(a +60))" = (Ao + A1y + Agd,” + - )" (5.13)
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and using the commutation relation
OILf p), &1 = 8*01F“ (5p)

we obtain
EV <0|i Lo+ 5 > M pmopmpme
= O T . 0 A1 AT
n=0 n! mo+mi+mo+---=n mO!ml!m2! T

mj>

X &211+2mz+3m3+~~ F(&) |0)

= (0| i Z nil 8'"1+2mz+3m3+'"

| | l...
n=0 mo+mi+mo+--=n mo:ny:naz:
mjz

x (y + &p)nf(m1+2m2+3m3+“')

.n(n—l)-~-(n+1—(m1+2m2+3m3+---))

mo Any Amp
x AOATLAD2 ..

n!
Using the relation
1 % e dt_n(n—l)u-(n—k—i-l)_ 1
2mi J okt T T n! T (n—k)!

we can factor as follows:

1 [€[A $ Ax8%t A3832 "
Ev=1(0> AW HIn) | ys 4 AT L AT Y R0
—2ni )t t

y+ yp v+ 5’p)2

1 (€ (A +I)\" ..
= (0 — - (=) F@I|0) +--- f — .
( InE:O 2ni?€z < ; (2)]0) + or y - +oo
Using the relations
1 1 f@)
E— 2 34 ... -~ 374
11— +z+z2°+2°+ f() i P t

we obtain the following:
1 e .
EV = (0. f—AF(&)|o> + - = (0] F(@)[0) + - - -
2ri J 1t — Ao(y + yp)
Using the relation ¢Be 4 = ¢ (B), we obtain

. . . A/ T
eE(Dt),Vp F(&)e_E(a),Vp — E(Ot)dd(y,y)F(&) = exp (E(Ot) 2m 88> F(a)
c a

a=a&

Therefore we can drop the quantum operators in the expectation value:

EV=e"® (0] exp(E(a) amT 38 ) F(a)
C a

a=a&

v2mT o
c

= exp(E(a) aa) F(a)

a=«o

eF@i |0y + ...

(5.14)

(5.15)

F(@)|0).

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)
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Here we have used the relatiof@a, = 0= &,10), ¥,/0) =0.
Because the exponential of derivation is a shift operator:

exp(wi) f@)=fz4+w) (5.24)

we arrive at (5.10). O

Now, we arrive at the following theorem.

Theorem 5.2The leading terms of the asymptotics of the expectation value behave
exponentially as follows.

vamT

c

(] det(l— ;ﬂi/))

P=(1—exp(@))/m

10)=A (ﬁ, o — C(B. a)) g Chan

+B <ﬂ, a—"2 2:” (C(B, @) + 4r1(a) Sintpl(a)})

x exp(—{C(B, a) + 4ri(a) sinpi(a)}y)
V2mT

c

+G <,3, o+ {(=C(B,a) + 4iA1(a)}> exp({—C (B, &) + 4ir1(c)}y)

vamT

c

+H (ﬂ,a—i- {(—C(B, ) —4i)ﬁ{(oz)})

x exp({—C(B. @) — 4irj(@)}y) + - . (5.25)
Here A(B, @), B(B, @), G(B, @) and H (B, «) are defined in (5.2), (5.3), (5.4) and (5.5).
Proof. Applying proposition 5.1 to (5.1), we arrive at the result. O

When we considet = oo, theorem 5.2 coincides with the asymptotics results for the
impenetrable Bose gas case [1].

Corollary 5.3.1In the limitm — 0, g - oo, x — oo such thatc = 2mg fixed and
J/mx — oo, the leading terms of asymptotics of the expectation value become

. . 2 mT mT mT 2
(j(x)j@@)r — D+ 5 Bo(B) + B1(B) R + Ba2(B) ¥
. mT
X exp{—4r1(0) Sing1(0) Zx}

mT G G mT G mT 2
e o(B) + G1(B) 7X+ 2(B) \/736

X exp{4ikl(0) m—sz }

+
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mT mT mT ?
+ e (Ho(ﬁ) + Hi(B) X + Hx(B) <\/jx> )

X exp{—4i)ﬁ{(0) mZTx} +oee (5.26)
HereD = N/L is the density of the thermodynamics afie= 1/ T. HereB;(B), G;(B) and
H;(B), (j = 0,1,2) are functions off. H;(B) (j = 0,1, 2) is the complex conjugation
of G;(B) (j =0,1,2), i.e. Hi(B) = Gj(,B). Explicit formulae for B;(8), G;(8) and
H;(B) (j =0,1, 2) are summarized in the appendix.

Proof. From corollaries 3.3, 5.3 and the relation

(J)JjO)r = 1;92 Q)2 = 1782 782 (exp(aQ(x))) (5.27)
HOTENT = 552 T = 55,3 52 OXPEC "o '
we can derive the result. For example the consfahis derived by
2 \13% 92 V2mT
D?’=(1+°D 19% 9% B, o — 2m CB,a) | &€l ... (5.28)
c 2 0x2 da? c -
O

Korepin [8] proposed a method of presenting correlation functions in the form of special
series. This method is useful in the calculation of the long-distance asymptotics. Bogoliubov
and Korepin [9] considered the asymptotics of correlation functions for the penetrable Bose
gas by the special series method. Corollary 5.3 coincides with the result of [9]. For the
impenetrable Bose gas ca&e = oo), Korepin and Slavnov [10] calculated higher-order
corrections and derived pre-exponential polynomials by the special series method. In this
paper we derived pre-exponential polynomials for penetrable Bose gaglcase < +00)
by using the determinant representation.
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Appendix

In this appendix we summarize the asymptotics of the density-density correlation function.
We use the notation given in corollary 5.3. In what follows, we use the following
abbreviations:

A1 =211(0) = /B + 7i r1 = A1l = [21(0)] @1 = argr; = argir1(0). (A1)
First we summarize the coefficients of §xry singi/mT/c x}:

2
T T T . T
’"7 (Bo(ﬂ) + Bi(B) ’%x + Bo(B) (\/ mZx) ) exp{—4r1 smgol,/’"zx} . (A2
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The functionsB; () are given by
~ 2
B;i(B) = B;(B) <1+ CD) (=012

where theB; (8) are given by

d(p) | 2sing, 2

By(B) = 16r1 Sirt g1 ( " ) x B (B, —4Ar1Singq)
Bu(B) = 322 i ¢y (d(ﬂ> 282%) <1 A (d(ﬁ) 2srn;¢1>>

oB
X (8 )(ﬂ —4ArySing;)

~ drysing, {(2‘1;’3 ) ) + T ) - WSO (B )

4sin:¢1 (5+cos 2p1)} x B(B, —4Ar;1 Sings)
r
. 2 2
Bolf) = 161 si ox {H A (d(ﬁ) 25|n<p1)} . <81§> (B, —4Ar1 Sing1)
7 ri oo
i 2
—4rysing; |:4d(/3) + 8singy LA :<2d(ﬂ)) 16 Sm(pld(ﬁ)
T ry T Tr

_ 4nising ( ﬁ) B + 43|r12<p1(5+0052p1)”

T rn

0B .
X <> (B, —4Ar1Singq)
o

) o g

s { <d§rﬁ)>2 L Asings o 4rising: <8d) 6 + 4sirt 2,

X B (B, —4Ar sin<p1) .

Here we used the abbreviations
vomT o0 1 h
d(ﬂ)=/ S
c oo 1P T

and the functionB(8, «) as defined in (5.3).
Next we summarize the coefficients of §&p.1/mT/2x}:

mT mT ? . mT
> (Go(ﬂ) + G1(B) —x + G2(B) (,/ 2x) ) eXp{4IA1\/jx} :

A =

5119

(A.3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8)
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The functionsG;(8) are given by

~ 2
G;(B)=G;(B) <1+ CD> (j=012). (A.9)
whereG;(B) are given by
G2(B) = —16)2 (d(ﬁ) ) x G (B, 4Aikr1) (A.10)

G1(B) = —3212 (d(ﬂ) ) (1 +A (d(ﬂ) )) X (M) (B, 4Airq)
4 )»1 T )»1 o

+4m{<2"’;’3)> +16'd(ﬂ)+4'“< ﬂ)(ﬂ) 12}

1

x G (B, 4Air1) (A.11)

Go(B) = —16A2{1+A<d(ﬂ) )} (G (8. 40iAD)
b )»]_ 0

[0 8 (2
1

T

+4'M< )(ﬂ) 12”x<30>(ﬂ,4mm
b4 ap o

{(d(ﬂ)) + i+ (2
TTAL T

Here the functionG (8, @) is defined in (5.4). Next we summarize the coefficients of

exp{—4iri/mT/2x}:

2
msz Ho(B) + H1(B) 7)6 + H2(B) (\/ szx) exp{ 4iry,/ ZTX} (A.13)

whereA; = /B — mi. The functionsH;(B) are given by the complex conjugationGf (8).
H;(B) = G;(B) (j=012. (A.14)

2 16i
+ —d(B)
ﬂ)»l

) (,3)} x G (B, 4Air;) . (A.12)
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