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Abstract. We consider the quantum nonlinear Schrödinger equation in one space and one time
dimension. We are interested in the non-free-fermionic case. We consider static temperature-
dependent correlation functions. The determinant representation for the correlation functions
simplifies in the small-mass limit of the Bose particle. In this limit we describe the correlation
functions by the vacuum expectation value of a boson-valued solution for Maxwell–Bloch
differential equation. We evaluate long-distance asymptotics of the correlation functions in
the small-mass limit.

1. Introduction

In this paper we consider correlation functions of exactly solvable models. Our approach is
based on the determinant representation of quantum correlation functions [1]. We consider
the thermodynamics of Bose gas with delta-interaction at finite temperatureT > 0. The
one-dimensional Bose gas with delta-function interaction is described by the canonical Bose
fieldsψ(x) andψ+(x) with the commutation relations:

[ψ(x), ψ+(y)] = δ(x − y) [ψ(x), ψ(y)] = [ψ+(x), ψ+(y)] = 0. (1.1)

The Hamiltonian of the model is

H =
∫

dx

(
1

2m

∂

∂x
ψ+(x)

∂

∂x
ψ(x)+ gψ+(x)ψ+(x)ψ(x)ψ(x)− hψ+(x)ψ(x)

)
(1.2)

wherem > 0 is the mass,g > 0 is the coupling constant andh > 0 is the chemical
potential. The HamiltonianH acts on the Fock space with the vacuum vector|vac〉. The
vacuum vector|vac〉 is characterized by the relation:

ψ(x)|vac〉 = 0. (1.3)

The dual vacuum vector〈vac| is characterized by the relations:

〈vac|ψ+(x) = 0 〈vac | vac〉 = 1. (1.4)

The corresponding equation of motion

i
∂

∂t
ψ = [ψ,H ] = − 1

2m

∂2

∂x2ψ + 2gψ+ψψ − hψ (1.5)
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is called the quantum nonlinear Schrödinger equation in one space and one time dimension.
The quantum field theory problem is reduced to a quantum mechanics problem. It is well
known that in theN -particle sector the eigenvalue problemH |ψN 〉 = EN |ψN 〉, is equivalent
to that described by the quantum mechanicsN -body Hamiltonian

HN = − 1

2m

N∑
j=1

∂2

∂z2
j

+ 2g
∑

16j<k6N
δ(zk − zj )−Nh. (1.6)

Lieb and Linger [2] solved the eigenvalue problemHNψN = ENψN . They constructed
the eigenfunctionsψN = ψN(z1, . . . , zN |λ1, . . . , λN) by means of the Bethe ansatz.
The eigenfunctionψN = ψN(z1, . . . , zN |λ1, . . . , λN) depends on the spectral parameter
λ1 < · · · < λN . The spectral parametersλ1 < · · · < λN are determined by the periodic
boundary conditions:

ψN(z1, . . . , zj + L, . . . , zN |λ1, . . . , λN) = ψN(z1, . . . , zj , . . . , zN |λ1, . . . , λN) (1.7)

which amounts to the Bethe ansatz equations:

eiλjL = −
N∏
k=1

λj − λk + 2img

λj − λk − 2img
j = 1, . . . , N. (1.8)

HereL > 0 is the size of the box. The eigenvalue of the HamiltonianHN is given by

EN =
N∑
j=1

(
1

2m
λ2
j − h

)
. (1.9)

Lieb and Linger [2, 3] discussed the zero temperature thermodynamic limit. The ground state
and its excitations are described by linear integral equations. Yang and Yang [4] discussed
the finite-temperature thermodynamic limit. The state of thermodynamic equilibrium is
described by nonlinear integral equations. The density of particlesρp(λ) and the density of
holesρh(λ) are described by the following nonlinear integral equations:

2πρt(λ) = 1+
∫ ∞
−∞

K(λ,µ)ρp(µ) dµ (1.10)

D = N

L
=
∫ ∞
−∞

ρp(µ) dµ (1.11)

ε(λ) = λ2

2m
− h− T

2π

∫ ∞
−∞

K(λ,µ) ln
(
1+ e−ε(µ)/T

)
dµ (1.12)

whereT > 0 is temperature andD = N/L is the density of particles. Here the functions
ε(λ) andρt(λ) are defined by

ρh(λ)

ρp(λ)
= eε(λ)/T ρt(λ) = ρp(λ)+ ρh(λ). (1.13)

The integral kernelK(λ,µ) is defined by

K(λ,µ) = 4mg

(λ− µ)2+ (2mg)2 . (1.14)

Consider the local density operatorj (x) = ψ+(x)ψ(x). In this paper we consider the mean
value of the operator

exp(αQ(x)) . (1.15)
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Hereα is an arbitrary complex parameter andQ(x) is the operator of the number of particles
on the interval [0, x]:

Q(x) =
∫ x

0
ψ+(y)ψ(y) dy. (1.16)

We are interested in the generating function of the temperature-dependent correlation
function defined by

〈exp(αQ(x))〉T = tr (exp(−H/T ) exp(αQ(x)))

tr (exp(−H/T )) . (1.17)

The expectation value〈exp(αQ(x))〉T is a remarkable quantity, because many interesting
correlation functions can be extracted from〈exp(αQ(x))〉T . For example, the density
correlation function

〈j (x)j (0)〉T = tr (exp(−H/T ) j (x)j (0))
tr (exp(−H/T )) (1.18)

can be derived by

〈j (x)j (0)〉T = 1

2

∂2

∂x2
〈Q(x)2〉T = 1

2

∂2

∂x2

∂2

∂α2
〈exp(αQ(x))〉T

∣∣∣∣
α=0

. (1.19)

In this paper we are interested in the small-mass limit of the Bose particle:

m→ 0, g→∞ such that the productc = 2mg is fixed. (1.20)

We want to emphasize that the small-mass limit is not a free-fermionic limit. The scattering
matrix of the particlesλp andλh is equal to

S(λp, λh) = exp
(−iδ(λp, λh)

)
λp > λh (1.21)

where the scattering phaseδ satisfies the following integral equation:

δ(λp, λh)− 1

2π

∫ ∞
−∞

K(λp, µ)ϑ(µ)δ(µ, λh) = i ln

(
ic + λp− λh

ic − λp+ λh

)
. (1.22)

Here we used

ϑ(λ) = 1

1+ eε(λ)/T
= ρp(λ)

ρt(λ)
. (1.23)

Therefore the small-mass limit is not a free-fermionic limit. In the small-mass limit we will
show that the expectation value〈exp(αQ(x))〉T is described by the vacuum expectation
value of a boson-valued solution of the Maxwell–Bloch equation [5]. The plan of this paper
is as follows. In section 2 we summarize known results of determinant representations
for correlation functions. In section 3 we consider the small-mass limit of temperature
correlation functions. The determinant representation for correlation functions simplifies in
the small-mass limit. In section 4 we show that correlation functions can be described by
the vacuum expectation value of a boson-valued solution of Maxwell–Bloch equation, in
the small-mass limit. In section 5 we evaluate asymptotics of the correlation functions in
the small-mass limit.
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2. Determinant representation with dual fields

The purpose of this section is to summarize the known results of the determinant
representation for temperature correlation functions [1]. First, we introduce the dual fields
φj (λ), (j = 1, . . . ,4) defined by

φj (λ) = pj (λ)+ qj (λ) j = 1, . . . ,4). (2.1)

Here the fieldspj (λ) andqj (λ) are defined by the commutation relations

[pj (λ), pk(µ)] = [qj (λ), qk(µ)] = 0

[pj (λ), qk(µ)] = Hj,k(λ, µ)

}
(j, k = 1, . . . ,4). (2.2)

Here we used

Hj,k(λ, µ) =


−1 0 0 −1

0 −1 1 0

1 0 −1 1

0 −1 1 −1


j,k

ln (h(λ, µ))

+


−1 0 1 0

0 −1 0 −1

0 1 −1 1

−1 0 1 −1


j,k

ln (h(µ, λ)) (2.3)

where

h(λ, µ) = 1

ic
(λ− µ+ ic). (2.4)

The dual fieldsφj (λ) commute:

[φj (λ), φk(µ)] = 0 (j, k = 1, . . . ,4). (2.5)

We introduce the auxiliary Fock space with the auxiliary vacuum vector|0〉. The auxiliary
vacuum vector|0〉 is characterized by

pj (λ)|0〉 = 0 (j = 1, . . . ,4). (2.6)

The auxiliary dual vacuum〈0| is characterized by

〈0|qj (λ) = 0 (j = 1, . . . ,4) 〈0 | 0〉 = 1. (2.7)

We want to emphasize that the dual fieldsφj (λ) (j = 1, . . . ,4) and the auxiliary Fock space
can be written in terms of the four standard Bose fieldsψj(λ), ψ

+
j (µ), (j = 1, . . . ,4) and

the standard Fock vacuum|0〉 and the dual Fock vacuum〈0|:
[ψj(λ), ψ

+
k (µ)] = δj,kδ(λ− µ)

[ψj(λ), ψk(µ)] = [ψ+j (λ), ψ
+
k (µ)] = 0

}
(j, k = 1, . . . ,4) (2.8)

ψj(λ)|0〉 = 0 〈0|ψ+j (λ) = 0. (2.9)

Actually, the dual fields can be realized by

pj (λ) = ψj(λ) qk(µ) =
4∑
l=1

∫ ∞
−∞

Hl,k(ν, µ)ψ
+
l (ν) dν (j, k = 1, . . . ,4). (2.10)
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Next we prepare two integral operatorsV̂T andK̂T . The integral operator̂VT is defined by

(
V̂T f

)
(λ) =

∫ ∞
−∞

VT (λ, µ)f (µ) dµ. (2.11)

The integral kernelVT (λ, µ) is defined by productVT (λ, µ) = V (λ, µ)ϑ(µ). The first
factorV (λ, µ) is defined by

V (λ, µ) = 1

c

{
t (λ, µ)+ t (µ, λ)exp(−ix(λ− µ)+ φ1(µ)− φ1(λ))

+ exp(α + φ3(λ)+ φ4(µ))

× (t (µ, λ)+ t (λ, µ)exp(−ix(λ− µ)+ φ2(λ)− φ2(µ)))
}

(2.12)

where

t (λ, µ) = (ic)2

(λ− µ)(λ− µ+ ic)
. (2.13)

We call the second factorϑ(λ) the Fermi weight:

ϑ(λ) = 1

1+ eε(λ)/T
= ρp(λ)

ρt(λ)
. (2.14)

Because the dual fieldsφj (λ) commute with each other, we can define the quantity
det
(
1+ (1/2π)V̂T

)
. The integral operator̂KT is defined by(

K̂T f
)
(λ) =

∫ ∞
−∞

KT (λ, µ)f (µ) dµ. (2.15)

The integral kernelKT (λ, µ) is defined byKT (λ, µ) = K(λ,µ)ϑ(µ). K(λ,µ) is defined
in (1.14). Now we state the results which we will use in the following sections.

Theorem 2.1 (Korepin [6]).In terms of the dual fieldsφj (λ) (j = 1, . . . ,4), we can express
the expectation value〈exp(αQ(x))〉T by the Fredholm determinant:

〈exp(αQ(x))〉T =
〈0| det

(
1+ (1/2π)V̂T

)
|0〉

det
(

1− (1/2π)K̂T
) . (2.16)

Here the symbol det
(
1+ (1/2π)V̂T

)
represents the Fredholm determinant corresponding to

the following Fredholm integral equation of the second kind:((
1+ 1

2π
V̂T

)
f

)
(λ) = g(λ) for λ ∈ (−∞,∞). (2.17)

The denominator det
(
1− (1/2π)K̂T

)
represents the Fredholm determinant corresponding to

the following Fredholm integral equation of the second kind:((
1− 1

2π
K̂T

)
f

)
(λ) = g(λ) for λ ∈ (−∞,∞). (2.18)
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3. The small-mass limit of the Bose particle

In this section we will show that in the small-mass limit:m → 0, g → ∞, such that
c = 2mg is fixed, a simplification occurs. As explained in the introduction, the scattering
matrix depends on the productc = 2mg, and not just ong. Therefore the limit of small
mass is not a free-fermion limit. We want to emphasize this point. In the sequel we consider
the limit of small mass. First we evaluate the solution of the Yang–Yang equation.

ε(λ) = λ2

2m
− h− T

2π

∫ ∞
−∞

K(λ,µ) ln
(
1+ e−ε(µ)/T

)
dµ. (3.1)

This is done following [4].

Lemma 3.1.In the small-mass limit of the Bose particle, a solution of the Yang–Yang
equation (3.1) is evaluated as

ε(λ) = λ2

2m
− h+O(

√
m). (3.2)

Proof. In [4] Yang and Yang derived the following inequalities:

λ2

2m
− h > ε(λ) > λ2

2m
+ x0 (3.3)

wherex0 is defined by the integral equation

x0 = −h− T

2π

∫ ∞
−∞

K(0, µ) ln

(
1+ exp

(
− 1

T

(
µ2

2m
+ x0

)))
du. (3.4)

The existence ofx0 is proved in [4]. Let us change the integration variable toν = µ/√2m.
In the limit of small mass,

√
cg tends to∞. Therefore we obtain

x0 = −h− T
π

∫ ∞
−∞

√
cg

(
√
cg)2+ ν2

ln
(

1+ e−(ν
2+x0)/T

)
dν (3.5)

= −h+ x0− T
π

∫ ∞
−∞

√
cg

(
√
cg)2+ ν2

ln
(

ex0/T + e−ν
2/T
)

dν (3.6)

= −h− T
π

1√
cg

∫ ∞
−∞

∫ ∞
−∞

ln
(

1+ e−(ν
2+x0)/T

)
dν +O(m). (3.7)

When we assume|x0| → ∞, this contradicts (3.6). Therefore we can assume that|x0| is
bounded. Therefore, from equation (3.7), we can deducex0 = −h+O(

√
m). �

From lemma 3.1, we can evaluate the Fermi weightϑ(λ). The Fermi weightϑ(λ) has
a very sharp maximum atλ = 0, from which it decreases very rapidly to 0. Therefore
a simplification occurs. First we consider the dual fields. In what follows we consider
the case where the spectral parameters are restricted toλ,µ ≈ O(

√
m). We observe the

simplification of the commutation relations:

[pj (λ), qk(µ)] =


0 0 −1 −1

0 0 1 1

1 −1 0 0

1 −1 0 0


j,k

i

c
(µ− λ)+O(m). (3.8)
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Therefore we can identify pairs of fields:

p1(λ) = −p2(λ) p3(λ) = p4(λ) (3.9)

q1(λ) = −q2(λ) q3(λ) = q4(λ) (3.10)

φ1(λ) = −φ2(λ) φ3(λ) = φ4(λ). (3.11)

Furthermore, because the first term of the commutation relation (3.8) is a linear function
of the spectral parameters, we can choose a representation of the fields such thatφj (λ) are
linear functions of the spectral parameterλ:

φj (λ) = φj (0)+ φ′j (0)λ
φj (0) = pj (0)+ qj (0)
φ′j (0) = p′j (0)+ q ′j (0)

 (j = 1, 3). (3.12)

Here the commutation relations are

[pj (0), qk(0)] = 0= [p′j (0), q
′
k(0)] (j, k = 1, 3) (3.13)

[p′1(0), q3(0)] = i

c
= −[p′3(0), q1(0)] [p3(0), q

′
1(0)] =

i

c
= −[p1(0), q

′
3(0)]. (3.14)

The actions on the auxiliary vacuum are

p1(0)|0〉 = p3(0)|0〉 = p′1(0)|0〉 = p′3(0)|0〉 = 0 (3.15)

〈0|q1(0) = 〈0|q3(0) = 〈0|q ′1(0) = 〈0|q ′3(0) = 0. (3.16)

Furthermore, we arrive at the following formula.

Theorem 3.2.In the small-mass limit of the Bose particle, the expectation value of the
Fredholm determinant simplifies as follows:

〈0| det

(
1+ 1

2π
V̂T

)
|0〉 7−→ 〈0| det

(
1+ V̂0,T

)
|0〉. (3.17)

Here the symbolV̂0,T is the integral operator defined by(
V̂0,T f

)
(λ) =

∫ ∞
−∞

V0,T (λ, µ)f (µ) dµ (3.18)

where the integral kernel is defined by product

V0,T (λ, µ) =
(

eα̂ − 1

π

)
sin 1

2 x̂(λ− µ)
λ− µ ϑ0

(
µ√
2mT

,
h

T

)
(3.19)

where

ϑ0(µ, β) = 1

1+ eµ2−β . (3.20)

Here we used the abbreviations

α̂ = α + α̂p + α̂q x̂ = x + x̂p + x̂q (3.21)

α̂p = 2p3(0) α̂q = 2q3(0) x̂p = −ip′1(0) x̂q = −iq ′1(0). (3.22)

The commutation relations and the actions on the auxiliary vacuum become

[x̂p, α̂q ] = 2

c
[α̂p, x̂q ] = 2

c
(3.23)

x̂p|0〉 = 0= α̂p|0〉 〈0|x̂q = 0= 〈0|α̂q . (3.24)

The dual fieldsα̂ and x̂ commute with each other: [α̂, x̂] = 0.
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Proof. From lemma 3.1, the Fermi weightϑ(λ) has a very sharp maximum atλ = 0 and
decreases very rapidly to 0. When we consider the integral operatorV̂T , we can restrict
our consideration to the case of the spectral parametersλ,µ ≈ O(

√
m). Therefore we

can use the above dual fields simplification. We can identify four dual fields to two dual
fields, which are linear in the spectral parametersλ,µ. Furthermore, since the relations
[p′3(0), φ1(λ) − φ1(µ)] = 0, [q ′3(0), φ1(λ) − φ1(µ)] = 0 and 〈0|q ′3(0) = 0, p′3(0)|0〉 = 0
hold, we can dropp′3(0), q

′
3(0) in the expectation value〈0| det

(
1+ (1/2π)V̂T

)|0〉. Next
we perform a similarity transformation exp

(
1
2iλ(x − iφ′1(0))

)
which leaves the Fredholm

determinant invariant. Finally we substitute the Fermi weightϑ(µ) by the modified Fermi
weightϑ0

(
µ/
√

2mT , h/T
)
. We get the desired formula. �

The denominator of the expectation value (2.16) becomes the following one:

det

(
1− 1

2π
K̂T

)
= 1−

√
2T

πc
d

(
h

T

)√
m+O(m) (3.25)

where we used

d(β) =
∫ ∞
−∞

ϑ0(µ, β) dµ. (3.26)

The densityD can be written as

D = N

L
=
∫ ∞
−∞

ρp(µ) dµ = 1

2π

∫ ∞
−∞

1

1+ exp
(

1
T

(
µ2

2m − h
)) dµ+O(m). (3.27)

Therefore we can write

det

(
1− 1

2π
K̂T

)
= 1− 2

c
D +O(m). (3.28)

Therefore we arrive at the simplified formula for correlation functions.

Corollary 3.3. In the small-mass limit of the Bose particle, the temperature correlation
function simplifies as follows:

〈exp(αQ(x))〉T 7−→ 〈0| det
(

1+ V̂0,T

)
|0〉
(

1+ 2

c
D

)
. (3.29)

HereD = N/L is the density of the thermodynamic limit.

4. Maxwell–Bloch differential equation

In this section we consider the differential equation for the temperature correlation function
in the small-mass limit of the Bose particle. In the small-mass limit, the Fredholm
determinant det

(
1+ V̂0,T

)
is a τ -function of the Maxwell–Bloch equation, taking values

in a commutative subalgebra of the quantum operator algebra. It can easily be seen that
after introducing new variables, the auxiliary fieldŷ and the scaled chemical potentialβ,

ŷ = y + ŷp + ŷq y =
√
mT

2
x ŷp =

√
mT

2
x̂p ŷq =

√
mT

2
x̂q β = h

T

(4.1)

the Fredholm determinant det
(
1+ V̂0,T

)
can be rewritten, after the corresponding change

λ→ λ/
√

2mT of the spectral parameter, as

det
(

1+ V̂0,T

)
= det

(
1− γ̂ Ŵ

)∣∣∣
γ̂=(1−exp(α̂))/π

. (4.2)
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We want to emphasize thatŷ is an operator in the auxiliary space. The integral operatorŴ

is defined by (
Ŵf

)
(λ) =

∫ ∞
−∞

W(λ,µ)f (µ) dµ (4.3)

where the integral kernelW(λ,µ) is given by

W(λ,µ) = sinŷ(λ− µ)
λ− µ ϑ0(µ, β). (4.4)

The algebraic structure of the Fredholm determinant det(1− γ̂ Ŵ )|γ̂=(1−exp(α̂))/π has been
investigated in the context of correlation functions for the impenetrable Bose gas [1]. It is
convenient to introduce the functionσ defined by

σ
(
ŷ, β, α̂

) = ln det
(

1− γ̂ Ŵ
)∣∣∣
γ̂=(1−exp(α̂))/π

. (4.5)

The operatorσ satisfies the Maxwell–Bloch equation in the case thatŷ and α̂ are real
numbers [1]. In our case,̂y and α̂ are quantum operator, but due to the fact that they
commute with each other, we can follow the derivation in [1]. Therefore we arrive at the
following results. In what follows we use the following operator-derivation notation:

∂

∂ŷ
F (ŷ) := ∂

∂z
F (z)

∣∣∣∣
z=ŷ

(4.6)

whereF = F(z) is a function ofz.

Proposition 4.1.The operatorσ(ŷ, β, α̂) = ln det(1 − γ̂ Ŵ )|γ̂=(1−exp(α̂))/π obeys the
following nonlinear partial differential equation:(

∂

∂β

∂2

∂ŷ
2σ

)2

= −4

(
∂2

∂ŷ
2σ

)(
2ŷ

∂

∂β

∂

∂ŷ
σ +

(
∂

∂β

∂

∂ŷ
σ

)2

− 2
∂

∂β
σ

)
(4.7)

with the initial conditions

σ = −
(

1− eα̂

π
d(β)

)
ŷ −

(
1− eα̂

π
d(β)

)2
ŷ2

2
+O(ŷ3) (4.8)

lim
β→−∞

σ(ŷ, β, α̂) = 0 (4.9)

where the scalar functiond(β) is defined in (3.26).

These initial data fix the solution uniquely. The nonlinear differential equation (4.7)
is called the Maxwell–Bloch equation [5]. Algebraically, it is known that atT = 0 the
operatorσ depends only on product of variablesŷ

√
β [6]. We setτ = ŷ√β = √mh/2 x̂.

Equation (4.7) is rewritten atT = 0 for the operator

σ0(τ ) = τ
d

dτ
ln det

(
1− γ̂ Ŵ

)∣∣∣∣
γ̂=(1−exp(α̂))/π

(4.10)

as (
τ

d2σ0

dτ 2

)2

= −4

(
τ

dσ0

dτ
− σ0

)(
4τ

dσ0

dτ
+
(

dσ0

dτ

)2

− 4σ0

)
. (4.11)

This ordinary differential equation is the fifth Painlevé equation in [7]. Actually, rewriting
(4.11) in terms of the functiony0(τ ) defined by

σ0(τ ) = −4iτu0(τ )+ u0(τ )
2

y0(τ )
(y0(τ )− 1)2 u0(τ ) = 4iτy0(τ )− τdy0(τ )/dτ

2(y0(τ )− 1)2
(4.12)
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we can get the familiar formula of the fifth Painlevé differential equation for the function
w(τ) = y0(

1
2τ):

d2w

dτ 2
=
(

dw

dτ

)2 3w − 1

2w(w − 1)
+ 2w(w + 1)

w − 1
+ 2iw

τ
− 1

τ

dw

dτ
. (4.13)

Next we derive the asymptotics ofσ(ŷ, β, α̂) = ln det(1− γ̂ Ŵ )|γ̂=(1−exp(α̂))/π . By means of
the Riemann–Hilbert method, the asymptotics ofσ are derived for the case whereŷ and α̂
are real numbers [1]. The idea of the Riemann–Hilbert method is due to Professor A R Its.
In our case,̂y and α̂ are quantum operators, but due to the fact that they commute, we can
follow the derivation in [1]. We arrive at the following asymptotics.

Proposition 4.2.The asymptotics of the operatorσ(ŷ, β, α̂) for large ŷ become the
following:

σ(ŷ, β, α̂) = −ŷ C(β, α̂)+ 1

2

∫ β

−∞

(
∂C(b, α̂)

∂b

)2

db

− 1

8

(e−α̂ − 1)2

r1(α̂)4 |a(λ1(α̂), α̂)|4 exp
(−4r1(α̂) sinϕ1(α̂) ŷ

)
×
(

1

sin2 ϕ1(α̂)
+ cos

{
4ŷr1(α̂) cosϕ1(α̂)− 4 arga(λ1(α̂), α̂)− 4ϕ1(α̂)

})
+ o

(
exp

(−4r1(α̂) sinϕ1(α̂) ŷ
))
. (4.14)

Here we set

C(β, α) = 1

π

∫ ∞
−∞

ln

(
1+ eµ

2−β

eα + eµ2−β

)
dµ (4.15)

λ1(α) =
√
α + β + π i r1(α) = |λ1(α)| ϕ1(α) = argλ1(α) (4.16)

a(λ, α) = exp

{
1

2π i

∫ ∞
−∞

dµ

µ− λ ln

(
1+ eµ

2−β

eα + eµ2−β

)}
. (4.17)

5. Evaluation of the mean value

In this section we evaluate the vacuum expectation value of the operator det(1 −
γ̂ Ŵ )|γ̂=(1−exp(α̂))/π for y = √mT/2x →+∞. From corollary 4.2, we deduce

〈0| det
(

1− γ̂ Ŵ
)∣∣∣
γ̂=(1−exp(α̂))/π

|0〉

= 〈0|A(β, α̂)e−C(β,α̂)ŷ + B(β, α̂) exp
(−{C(β, α̂)+ 4r1(α̂) sinϕ1(α̂)}ŷ

)
+G (β, α̂) exp

({−C(β, α̂)+ 4iλ1(α̂)}ŷ
)

+H (
β, α̂

)
exp

({−C(β, α̂)− 4iλ∗1(α̂)}ŷ
) |0〉 + · · · . (5.1)
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Here we set

A(β, α) = exp

{
1

2

∫ β

−∞

(
∂C(b, α)

∂b

)2

db

}
(5.2)

B (β, α) = − (e−α − 1)2

8r1(α)4 sin2 ϕ1(α)

(
a(λ∗1(α), α)
a(λ1(α), α)

)2

A(β, α) (5.3)

G(β, α) = − (e
−α − 1)2

16

1

λ1(α)4a(λ1(α), α)4
A(β, α) (5.4)

H(β, α) = − (e
−α − 1)2

16

a(λ∗1(α), α)
4

λ∗1(α)4
A(β, α) (5.5)

whereC(β, α), λ1(α), r1(α), ϕ1(α) and a(λ, α) are defined in (4.15), (4.16) and (4.17).
λ∗1(α) is the complex conjugation ofλ1(α), i.e.

λ∗1(α) =
√
α + β − π i. (5.6)

H(β, α) is the complex conjugation ofG(β, α).
In this section we evaluate the right-hand of the above vacuum expectation value. For the

convenience of the reader we summarize below the commutation relations of the quantum
operators:

ŷ = y + ŷp + ŷq y =
√
mT

2
x, ŷp =

√
mT

2
x̂p ŷq =

√
mT

2
x̂q (5.7)

α̂ = α + α̂p + α̂q β = h

T
(5.8)

[ŷp, α̂q ] =
√

2mT

c
= [α̂p, ŷq ] ŷp|0〉 = 0= α̂p|0〉 〈0|ŷq = 0= 〈0|α̂q . (5.9)

The following proposition is the key to calculating the vacuum expectation value.

Proposition 5.1.The following asymptotic formula holds at largey →+∞:

〈0|eŷE(α̂)F (α̂)|0〉 = F
(
α +
√

2mT

c
E(α)

)
eyE(α) + · · · . (5.10)

HereE(α) andF(α) are meromorphic functions ofα.

Proof. In this proof we use the following abbreviations:

δ =
√

2mT

c
A0+ A1α̂q + A2α̂q

2+ · · · = E(α + α̂q). (5.11)

First we expand the exponential function and use the relations〈0|ŷq = 0, α̂p|0〉 = 0 and
[α̂p, α̂q ] = 0. We obtain

EV := 〈0|F(α̂) exp
{
ŷE(α̂)

} |0〉 = 〈0| ∞∑
n=0

1

n!
(y + ŷp)n(E(α + α̂q))nF (α̂)|0〉. (5.12)

We expand

(E(α + α̂q))n = (A0+ A1α̂q + A2α̂q
2+ · · ·)n (5.13)
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and using the commutation relation

〈0|[f (ŷp), α̂kq ] = δk〈0|f (k)(ŷp) (5.14)

we obtain

EV = 〈0|
∞∑
n=0

1

n!
(y + ŷp)n

∑
m0+m1+m2+···=n

mj>0

n!

m0!m1!m2! · · ·A
m0
0 A

m1
1 A

m2
2 · · ·

× α̂m1+2m2+3m3+···
q F (α̂)|0〉 (5.15)

= 〈0|
∞∑
n=0

∑
m0+m1+m2+···=n

mj>0

n!

m0!m1!m2! · · · δ
m1+2m2+3m3+···

× (y + ŷp)n−(m1+2m2+3m3+···)

×Am0
0 A

m1
1 A

m2
2 · · ·

n(n− 1) · · · (n+ 1− (m1+ 2m2+ 3m3+ · · ·))
n!

F(α̂)|0〉.
(5.16)

Using the relation

1

2π i

∮
et

tn−k+1
dt = n(n− 1) · · · (n− k + 1)

n!
= 1

(n− k)! (5.17)

we can factor as follows:

EV = 〈0|
∞∑
n=0

1

2π i

∮
et

t

(
A0(y + ŷp)

t
+ A1δ + A2δ

2t

y + ŷp +
A3δ

3t2

(y + ŷp)2 + · · ·
)n
F (α̂)|0〉

(5.18)

= 〈0|
∞∑
n=0

1

2π i

∮
et

t

(
A0(y + ŷp)

t

)n
F (α̂)|0〉 + · · · for y →+∞. (5.19)

Using the relations

1

1− z = 1+ z + z2+ z3+ · · · f (z) = 1

2π i

∮
f (t)

t − z dt (5.20)

we obtain the following:

EV = 〈0| 1

2π i

∮
et

t − A0(y + ŷp)F (α̂)|0〉 + · · · = 〈0|e
A0(y+ŷp)F (α̂)|0〉 + · · · . (5.21)

Using the relation eABe−A = ead(A)(B), we obtain

eE(α)ŷpF (α̂)e−E(α)ŷp = eE(α)ad(ŷp)F (α̂) = exp

(
E(α)

√
2mT

c

∂

∂a

)
F(a)

∣∣∣∣∣
a=α̂

. (5.22)

Therefore we can drop the quantum operators in the expectation value:

EV = eyE(α)〈0| exp

(
E(α)

√
2mT

c

∂

∂a

)
F(a)

∣∣∣∣∣
a=α̂

eE(α)ŷp |0〉 + · · ·

= exp

(
E(α)

√
2mT

c

∂

∂a

)
F(a)

∣∣∣∣∣
a=α
+ · · · . (5.23)
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Here we have used the relations〈0|α̂q = 0= α̂p|0〉, ŷp|0〉 = 0.
Because the exponential of derivation is a shift operator:

exp

(
w
∂

∂z

)
f (z) = f (z + w) (5.24)

we arrive at (5.10). �
Now, we arrive at the following theorem.

Theorem 5.2.The leading terms of the asymptotics of the expectation value behave
exponentially as follows.

〈0| det
(

1− γ̂ Ŵ
)∣∣∣
γ̂=(1−exp(α̂))/π

|0〉 = A
(
β, α −

√
2mT

c
C(β, α)

)
e−C(β,α)y

+B
(
β, α −

√
2mT

c
{C(β, α)+ 4r1(α) sinϕ1(α)}

)
× exp(−{C(β, α)+ 4r1(α) sinϕ1(α)}y)

+G
(
β, α +

√
2mT

c
{−C(β, α)+ 4iλ1(α)}

)
exp({−C(β, α)+ 4iλ1(α)}y)

+H
(
β, α +

√
2mT

c
{−C(β, α)− 4iλ∗1(α)}

)

× exp
({−C(β, α)− 4iλ∗1(α)}y

)+ · · · . (5.25)

HereA(β, α), B(β, α),G(β, α) andH(β, α) are defined in (5.2), (5.3), (5.4) and (5.5).

Proof. Applying proposition 5.1 to (5.1), we arrive at the result. �
When we considerc = ∞, theorem 5.2 coincides with the asymptotics results for the

impenetrable Bose gas case [1].

Corollary 5.3. In the limit m → 0, g → ∞, x → ∞ such thatc = 2mg fixed and√
mx →∞, the leading terms of asymptotics of the expectation value become

〈j (x)j (0)〉T → D2+ mT
2

B0(β)+ B1(β)

√
mT

2
x + B2(β)

(√
mT

2
x

)2


× exp

{
−4r1(0) sinϕ1(0)

√
mT

2
x

}

+ mT
2

G0(β)+G1(β)

√
mT

2
x +G2(β)

(√
mT

2
x

)2


× exp

{
4iλ1(0)

√
mT

2
x

}
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+ mT
2

H0(β)+H1(β)

√
mT

2
x +H2(β)

(√
mT

2
x

)2


× exp

{
−4iλ∗1(0)

√
mT

2
x

}
+ · · · . (5.26)

HereD = N/L is the density of the thermodynamics andβ = h/T . HereBj(β), Gj (β) and
Hj(β), (j = 0, 1, 2) are functions ofβ. Hj(β) (j = 0, 1, 2) is the complex conjugation
of Gj(β) (j = 0, 1, 2), i.e. Hj(β) = G∗j (β). Explicit formulae forBj(β), Gj (β) and
Hj(β) (j = 0, 1, 2) are summarized in the appendix.

Proof. From corollaries 3.3, 5.3 and the relation

〈j (x)j (0)〉T = 1

2

∂2

∂x2
〈Q(x)2〉T = 1

2

∂2

∂x2

∂2

∂α2
〈exp(αQ(x))〉T

∣∣∣∣
α=0

(5.27)

we can derive the result. For example the constantD2 is derived by

D2 =
(

1+ 2

c
D

)
1

2

∂2

∂x2

∂2

∂α2
A

(
β, α −

√
2mT

c
C(β, α)

)
e−C(β,α)y

∣∣∣∣∣
α=0

+ · · · . (5.28)

�
Korepin [8] proposed a method of presenting correlation functions in the form of special

series. This method is useful in the calculation of the long-distance asymptotics. Bogoliubov
and Korepin [9] considered the asymptotics of correlation functions for the penetrable Bose
gas by the special series method. Corollary 5.3 coincides with the result of [9]. For the
impenetrable Bose gas case(c = ∞), Korepin and Slavnov [10] calculated higher-order
corrections and derived pre-exponential polynomials by the special series method. In this
paper we derived pre-exponential polynomials for penetrable Bose gas case(0< c < +∞)
by using the determinant representation.
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Appendix

In this appendix we summarize the asymptotics of the density-density correlation function.
We use the notation given in corollary 5.3. In what follows, we use the following
abbreviations:

λ1 = λ1(0) =
√
β + π i r1 = |λ1| = |λ1(0)| ϕ1 = argλ1 = argλ1(0). (A.1)

First we summarize the coefficients of exp{−4r1 sinϕ1
√
mT/c x}:

mT

2

B0(β)+ B1(β)

√
mT

2
x + B2(β)

(√
mT

2
x

)2
 exp

{
−4r1 sinϕ1

√
mT

2
x

}
. (A.2)
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The functionsBj(β) are given by

Bj(β) = B̃j (β)
(

1+ 2

c
D

)
(j = 0, 1, 2) (A.3)

where theB̃j (β) are given by

B̃2(β) = 16r2
1 sin2 ϕ1

(
d(β)

π
+ 2 sinϕ1

r1

)2

× B (β,−41r1 sinϕ1) (A.4)

B̃1(β) = 32r2
1 sin2 ϕ1

(
d(β)

π
+ 2 sinϕ1

r1

)(
1+1

(
d(β)

π
+ 2 sinϕ1

r1

))

×
(
∂B

∂α

)
(β,−41r1 sinϕ1)

− 4r1 sinϕ1

{(
2d(β)

π

)2

+ 16 sinϕ1

πr1
d(β)− 4r1 sinϕ1

π

(
∂d

∂β

)
(β)

+ 4 sin2 ϕ1

r2
1

(5+ cos 2ϕ1)

}
× B(β,−41r1 sinϕ1) (A.5)

B̃0(β) = 16r2
1 sin2 ϕ1

{
1+1

(
d(β)

π
+ 2 sinϕ1

r1

)}2

×
(
∂2B

∂α2

)
(β,−41r1 sinϕ1)

− 4r1 sinϕ1

[
4d(β)

π
+ 8 sinϕ1

r1
+1

{(
2d(β)

π

)2

+ 16 sinϕ1

πr1
d(β)

− 4r1 sinϕ1

π

(
∂d

∂β

)
(β)+ 4 sin2 ϕ1

r2
1

(5+ cos 2ϕ1)

}]

×
(
∂B

∂α

)
(β,−41r1 sinϕ1)

+ 2

{(
d(β)

π

)2

+ 4 sinϕ1

πr1
d(β)− 4r1 sinϕ1

π

(
∂d

∂β

)
(β)+ 4 sin2 2ϕ1

r2
1

}

×B (β,−41r1 sinϕ1) . (A.6)

Here we used the abbreviations

1 =
√

2mT

c
d(β) =

∫ ∞
−∞

1

1+ eµ2−β dµ β = h

T
(A.7)

and the functionB(β, α) as defined in (5.3).
Next we summarize the coefficients of exp{4iλ1

√
mT/2x}:

mT

2

G0(β)+G1(β)

√
mT

2
x +G2(β)

(√
mT

2
x

)2
 exp

{
4iλ1

√
mT

2
x

}
. (A.8)
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The functionsGj(β) are given by

Gj(β) = G̃j (β)
(

1+ 2

c
D

)
(j = 0, 1, 2). (A.9)

whereG̃j (β) are given by

G̃2(β) = −16λ2
1

(
d(β)

π
+ 2i

λ1

)2

×G(β, 41iλ1) (A.10)

G̃1(β) = −32λ2
1

(
d(β)

π
+ 2i

λ1

)(
1+1

(
d(β)

π
+ 2i

λ1

))
×
(
∂G

∂α

)
(β, 41iλ1)

+ 4iλ1

{(
2d(β)

π

)2

+ 16i

πλ1
d(β)+ 4iλ1

π

(
∂d

∂β

)
(β)− 12

λ2
1

}
×G(β, 41iλ1) (A.11)

G̃0(β) = −16λ2
1

{
1+1

(
d(β)

π
+ 2i

λ1

)}2

×
(
∂2G

∂α2

)
(β, 41iλ1)

+ 4iλ1

[
4d(β)

π
+ 8i

λ1
+1

{(
2d(β)

π

)2

+ 16i

πλ1
d(β)

+ 4iλ1

π

(
∂d

∂β

)
(β)− 12

λ2
1

}]
×
(
∂G

∂α

)
(β, 41iλ1)

+ 2

{(
d(β)

π

)2

+ 4i

πλ1
d(β)+ 4iλ1

π

(
∂d

∂β

)
(β)

}
×G(β, 41iλ1) . (A.12)

Here the functionG(β, α) is defined in (5.4). Next we summarize the coefficients of
exp{−4iλ∗1

√
mT/2x}:

mT

2

H0(β)+H1(β)

√
mT

2
x +H2(β)

(√
mT

2
x

)2
 exp

{
−4iλ∗1

√
mT

2
x

}
(A.13)

whereλ∗1 =
√
β − π i. The functionsHj(β) are given by the complex conjugation ofGj(β).

Hj(β) = G∗j (β) (j = 0, 1, 2). (A.14)
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