The Maxwell - Bloch equation and correlation functions for the penetrable Bose gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 305105
(http://iopscience.iop.org/0305-4470/30/14/020)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:49

Please note that terms and conditions apply.

The Maxwell-Bloch equation and correlation functions for the penetrable Bose gas

T Kojima $\dagger \S$ and V Korepin \ddagger
\dagger Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan
\ddagger Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA

Received 3 March 1997

Abstract

We consider the quantum nonlinear Schrödinger equation in one space and one time dimension. We are interested in the non-free-fermionic case. We consider static temperaturedependent correlation functions. The determinant representation for the correlation functions simplifies in the small-mass limit of the Bose particle. In this limit we describe the correlation functions by the vacuum expectation value of a boson-valued solution for Maxwell-Bloch differential equation. We evaluate long-distance asymptotics of the correlation functions in the small-mass limit.

1. Introduction

In this paper we consider correlation functions of exactly solvable models. Our approach is based on the determinant representation of quantum correlation functions [1]. We consider the thermodynamics of Bose gas with delta-interaction at finite temperature $T>0$. The one-dimensional Bose gas with delta-function interaction is described by the canonical Bose fields $\psi(x)$ and $\psi^{+}(x)$ with the commutation relations:
$\left[\psi(x), \psi^{+}(y)\right]=\delta(x-y) \quad[\psi(x), \psi(y)]=\left[\psi^{+}(x), \psi^{+}(y)\right]=0$.
The Hamiltonian of the model is
$H=\int \mathrm{d} x\left(\frac{1}{2 m} \frac{\partial}{\partial x} \psi^{+}(x) \frac{\partial}{\partial x} \psi(x)+g \psi^{+}(x) \psi^{+}(x) \psi(x) \psi(x)-h \psi^{+}(x) \psi(x)\right)$
where $m>0$ is the mass, $g>0$ is the coupling constant and $h>0$ is the chemical potential. The Hamiltonian H acts on the Fock space with the vacuum vector |vac〉. The vacuum vector $|\mathrm{vac}\rangle$ is characterized by the relation:

$$
\begin{equation*}
\psi(x)|\operatorname{vac}\rangle=0 \tag{1.3}
\end{equation*}
$$

The dual vacuum vector $\langle\mathrm{vac}\rangle$ is characterized by the relations:

$$
\begin{equation*}
\langle\operatorname{vac}| \psi^{+}(x)=0 \quad\langle\operatorname{vac} \mid \operatorname{vac}\rangle=1 . \tag{1.4}
\end{equation*}
$$

The corresponding equation of motion

$$
\begin{equation*}
\mathrm{i} \frac{\partial}{\partial t} \psi=[\psi, H]=-\frac{1}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi+2 g \psi^{+} \psi \psi-h \psi \tag{1.5}
\end{equation*}
$$

\S Research Fellow of the Japan Society for the Promotion of Science; e-mail address: kojima@kurims.kyotou.ac.jp
|| E-mail address: korepin@insti.physics.sunysb.edu
is called the quantum nonlinear Schrödinger equation in one space and one time dimension. The quantum field theory problem is reduced to a quantum mechanics problem. It is well known that in the N-particle sector the eigenvalue problem $H\left|\psi_{N}\right\rangle=E_{N}\left|\psi_{N}\right\rangle$, is equivalent to that described by the quantum mechanics N-body Hamiltonian

$$
\begin{equation*}
H_{N}=-\frac{1}{2 m} \sum_{j=1}^{N} \frac{\partial^{2}}{\partial z_{j}^{2}}+2 g \sum_{1 \leqslant j<k \leqslant N} \delta\left(z_{k}-z_{j}\right)-N h \tag{1.6}
\end{equation*}
$$

Lieb and Linger [2] solved the eigenvalue problem $H_{N} \psi_{N}=E_{N} \psi_{N}$. They constructed the eigenfunctions $\psi_{N}=\psi_{N}\left(z_{1}, \ldots, z_{N} \mid \lambda_{1}, \ldots, \lambda_{N}\right)$ by means of the Bethe ansatz. The eigenfunction $\psi_{N}=\psi_{N}\left(z_{1}, \ldots, z_{N} \mid \lambda_{1}, \ldots, \lambda_{N}\right)$ depends on the spectral parameter $\lambda_{1}<\cdots<\lambda_{N}$. The spectral parameters $\lambda_{1}<\cdots<\lambda_{N}$ are determined by the periodic boundary conditions:
$\psi_{N}\left(z_{1}, \ldots, z_{j}+L, \ldots, z_{N} \mid \lambda_{1}, \ldots, \lambda_{N}\right)=\psi_{N}\left(z_{1}, \ldots, z_{j}, \ldots, z_{N} \mid \lambda_{1}, \ldots, \lambda_{N}\right)$
which amounts to the Bethe ansatz equations:

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \lambda_{j} L}=-\prod_{k=1}^{N} \frac{\lambda_{j}-\lambda_{k}+2 \mathrm{i} m g}{\lambda_{j}-\lambda_{k}-2 \mathrm{i} m g} \quad j=1, \ldots, N . \tag{1.8}
\end{equation*}
$$

Here $L>0$ is the size of the box. The eigenvalue of the Hamiltonian H_{N} is given by

$$
\begin{equation*}
E_{N}=\sum_{j=1}^{N}\left(\frac{1}{2 m} \lambda_{j}^{2}-h\right) \tag{1.9}
\end{equation*}
$$

Lieb and Linger [2, 3] discussed the zero temperature thermodynamic limit. The ground state and its excitations are described by linear integral equations. Yang and Yang [4] discussed the finite-temperature thermodynamic limit. The state of thermodynamic equilibrium is described by nonlinear integral equations. The density of particles $\rho_{\mathrm{p}}(\lambda)$ and the density of holes $\rho_{\mathrm{h}}(\lambda)$ are described by the following nonlinear integral equations:

$$
\begin{align*}
& 2 \pi \rho_{\mathrm{t}}(\lambda)=1+\int_{-\infty}^{\infty} K(\lambda, \mu) \rho_{\mathrm{p}}(\mu) \mathrm{d} \mu \tag{1.10}\\
& D=\frac{N}{L}=\int_{-\infty}^{\infty} \rho_{\mathrm{p}}(\mu) \mathrm{d} \mu \tag{1.11}\\
& \varepsilon(\lambda)=\frac{\lambda^{2}}{2 m}-h-\frac{T}{2 \pi} \int_{-\infty}^{\infty} K(\lambda, \mu) \ln \left(1+\mathrm{e}^{-\varepsilon(\mu) / T}\right) \mathrm{d} \mu \tag{1.12}
\end{align*}
$$

where $T>0$ is temperature and $D=N / L$ is the density of particles. Here the functions $\varepsilon(\lambda)$ and $\rho_{\mathrm{t}}(\lambda)$ are defined by

$$
\begin{equation*}
\frac{\rho_{\mathrm{h}}(\lambda)}{\rho_{\mathrm{p}}(\lambda)}=\mathrm{e}^{\varepsilon(\lambda) / T} \quad \rho_{\mathrm{t}}(\lambda)=\rho_{\mathrm{p}}(\lambda)+\rho_{\mathrm{h}}(\lambda) . \tag{1.13}
\end{equation*}
$$

The integral kernel $K(\lambda, \mu)$ is defined by

$$
\begin{equation*}
K(\lambda, \mu)=\frac{4 m g}{(\lambda-\mu)^{2}+(2 m g)^{2}} . \tag{1.14}
\end{equation*}
$$

Consider the local density operator $j(x)=\psi^{+}(x) \psi(x)$. In this paper we consider the mean value of the operator

$$
\begin{equation*}
\exp (\alpha Q(x)) \tag{1.15}
\end{equation*}
$$

Here α is an arbitrary complex parameter and $Q(x)$ is the operator of the number of particles on the interval $[0, x]$:

$$
\begin{equation*}
Q(x)=\int_{0}^{x} \psi^{+}(y) \psi(y) \mathrm{d} y \tag{1.16}
\end{equation*}
$$

We are interested in the generating function of the temperature-dependent correlation function defined by

$$
\begin{equation*}
\langle\exp (\alpha Q(x))\rangle_{T}=\frac{\operatorname{tr}(\exp (-H / T) \exp (\alpha Q(x)))}{\operatorname{tr}(\exp (-H / T))} \tag{1.17}
\end{equation*}
$$

The expectation value $\langle\exp (\alpha Q(x))\rangle_{T}$ is a remarkable quantity, because many interesting correlation functions can be extracted from $\langle\exp (\alpha Q(x))\rangle_{T}$. For example, the density correlation function

$$
\begin{equation*}
\langle j(x) j(0)\rangle_{T}=\frac{\operatorname{tr}(\exp (-H / T) j(x) j(0))}{\operatorname{tr}(\exp (-H / T))} \tag{1.18}
\end{equation*}
$$

can be derived by

$$
\begin{equation*}
\langle j(x) j(0)\rangle_{T}=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left\langle Q(x)^{2}\right\rangle_{T}=\left.\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \frac{\partial^{2}}{\partial \alpha^{2}}\langle\exp (\alpha Q(x))\rangle_{T}\right|_{\alpha=0} \tag{1.19}
\end{equation*}
$$

In this paper we are interested in the small-mass limit of the Bose particle:

$$
\begin{equation*}
m \rightarrow 0, g \rightarrow \infty \quad \text { such that the product } c=2 m g \text { is fixed. } \tag{1.20}
\end{equation*}
$$

We want to emphasize that the small-mass limit is not a free-fermionic limit. The scattering matrix of the particles λ_{p} and λ_{h} is equal to

$$
\begin{equation*}
S\left(\lambda_{\mathrm{p}}, \lambda_{\mathrm{h}}\right)=\exp \left(-\mathrm{i} \delta\left(\lambda_{\mathrm{p}}, \lambda_{\mathrm{h}}\right)\right) \quad \lambda_{\mathrm{p}}>\lambda_{\mathrm{h}} \tag{1.21}
\end{equation*}
$$

where the scattering phase δ satisfies the following integral equation:

$$
\begin{equation*}
\delta\left(\lambda_{\mathrm{p}}, \lambda_{\mathrm{h}}\right)-\frac{1}{2 \pi} \int_{-\infty}^{\infty} K\left(\lambda_{\mathrm{p}}, \mu\right) \vartheta(\mu) \delta\left(\mu, \lambda_{\mathrm{h}}\right)=\mathrm{i} \ln \left(\frac{\mathrm{i} c+\lambda_{\mathrm{p}}-\lambda_{\mathrm{h}}}{\mathrm{i} c-\lambda_{\mathrm{p}}+\lambda_{\mathrm{h}}}\right) \tag{1.22}
\end{equation*}
$$

Here we used

$$
\begin{equation*}
\vartheta(\lambda)=\frac{1}{1+\mathrm{e}^{\varepsilon(\lambda) / T}}=\frac{\rho_{\mathrm{p}}(\lambda)}{\rho_{\mathrm{t}}(\lambda)} \tag{1.23}
\end{equation*}
$$

Therefore the small-mass limit is not a free-fermionic limit. In the small-mass limit we will show that the expectation value $\langle\exp (\alpha Q(x))\rangle_{T}$ is described by the vacuum expectation value of a boson-valued solution of the Maxwell-Bloch equation [5]. The plan of this paper is as follows. In section 2 we summarize known results of determinant representations for correlation functions. In section 3 we consider the small-mass limit of temperature correlation functions. The determinant representation for correlation functions simplifies in the small-mass limit. In section 4 we show that correlation functions can be described by the vacuum expectation value of a boson-valued solution of Maxwell-Bloch equation, in the small-mass limit. In section 5 we evaluate asymptotics of the correlation functions in the small-mass limit.

2. Determinant representation with dual fields

The purpose of this section is to summarize the known results of the determinant representation for temperature correlation functions [1]. First, we introduce the dual fields $\phi_{j}(\lambda),(j=1, \ldots, 4)$ defined by

$$
\begin{equation*}
\left.\phi_{j}(\lambda)=p_{j}(\lambda)+q_{j}(\lambda) \quad j=1, \ldots, 4\right) \tag{2.1}
\end{equation*}
$$

Here the fields $p_{j}(\lambda)$ and $q_{j}(\lambda)$ are defined by the commutation relations

$$
\left.\begin{array}{l}
{\left[p_{j}(\lambda), p_{k}(\mu)\right]=\left[q_{j}(\lambda), q_{k}(\mu)\right]=0} \tag{2.2}\\
{\left[p_{j}(\lambda), q_{k}(\mu)\right]=H_{j, k}(\lambda, \mu)}
\end{array}\right\} \quad(j, k=1, \ldots, 4) .
$$

Here we used

$$
\begin{align*}
H_{j, k}(\lambda, \mu)= & \left(\begin{array}{cccc}
-1 & 0 & 0 & -1 \\
0 & -1 & 1 & 0 \\
1 & 0 & -1 & 1 \\
0 & -1 & 1 & -1
\end{array}\right)_{j, k} \ln (h(\lambda, \mu)) \\
& +\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 \\
0 & 1 & -1 & 1 \\
-1 & 0 & 1 & -1
\end{array}\right)_{j, k} \ln (h(\mu, \lambda)) \tag{2.3}
\end{align*}
$$

where

$$
\begin{equation*}
h(\lambda, \mu)=\frac{1}{\mathrm{i} c}(\lambda-\mu+\mathrm{i} c) \tag{2.4}
\end{equation*}
$$

The dual fields $\phi_{j}(\lambda)$ commute:

$$
\begin{equation*}
\left[\phi_{j}(\lambda), \phi_{k}(\mu)\right]=0 \quad(j, k=1, \ldots, 4) \tag{2.5}
\end{equation*}
$$

We introduce the auxiliary Fock space with the auxiliary vacuum vector $|0\rangle$. The auxiliary vacuum vector $|0\rangle$ is characterized by

$$
\begin{equation*}
p_{j}(\lambda)|0\rangle=0 \quad(j=1, \ldots, 4) \tag{2.6}
\end{equation*}
$$

The auxiliary dual vacuum $\langle 0|$ is characterized by

$$
\begin{equation*}
\langle 0| q_{j}(\lambda)=0 \quad(j=1, \ldots, 4) \quad\langle 0 \mid 0\rangle=1 \tag{2.7}
\end{equation*}
$$

We want to emphasize that the dual fields $\phi_{j}(\lambda)(j=1, \ldots, 4)$ and the auxiliary Fock space can be written in terms of the four standard Bose fields $\psi_{j}(\lambda), \psi_{j}^{+}(\mu),(j=1, \ldots, 4)$ and the standard Fock vacuum $|0\rangle$ and the dual Fock vacuum $\langle 0|$:

$$
\left.\begin{array}{l}
{\left[\psi_{j}(\lambda), \psi_{k}^{+}(\mu)\right]=\delta_{j, k} \delta(\lambda-\mu)} \\
{\left[\psi_{j}(\lambda), \psi_{k}(\mu)\right]=\left[\psi_{j}^{+}(\lambda), \psi_{k}^{+}(\mu)\right]=0} \tag{2.9}
\end{array}\right\} \quad(j, k=1, \ldots, 4)
$$

Actually, the dual fields can be realized by
$p_{j}(\lambda)=\psi_{j}(\lambda) \quad q_{k}(\mu)=\sum_{l=1}^{4} \int_{-\infty}^{\infty} H_{l, k}(\nu, \mu) \psi_{l}^{+}(\nu) \mathrm{d} \nu \quad(j, k=1, \ldots, 4)$.

Next we prepare two integral operators \hat{V}_{T} and \hat{K}_{T}. The integral operator \hat{V}_{T} is defined by

$$
\begin{equation*}
\left(\hat{V}_{T} f\right)(\lambda)=\int_{-\infty}^{\infty} V_{T}(\lambda, \mu) f(\mu) \mathrm{d} \mu \tag{2.11}
\end{equation*}
$$

The integral kernel $V_{T}(\lambda, \mu)$ is defined by product $V_{T}(\lambda, \mu)=V(\lambda, \mu) \vartheta(\mu)$. The first factor $V(\lambda, \mu)$ is defined by

$$
\begin{align*}
V(\lambda, \mu)=\frac{1}{c}\{ & t(\lambda, \mu)+t(\mu, \lambda) \exp \left(-\mathrm{i} x(\lambda-\mu)+\phi_{1}(\mu)-\phi_{1}(\lambda)\right) \\
& +\exp \left(\alpha+\phi_{3}(\lambda)+\phi_{4}(\mu)\right) \\
& \left.\times\left(t(\mu, \lambda)+t(\lambda, \mu) \exp \left(-\mathrm{i} x(\lambda-\mu)+\phi_{2}(\lambda)-\phi_{2}(\mu)\right)\right)\right\} \tag{2.12}
\end{align*}
$$

where

$$
\begin{equation*}
t(\lambda, \mu)=\frac{(\mathrm{i} c)^{2}}{(\lambda-\mu)(\lambda-\mu+\mathrm{i} c)} \tag{2.13}
\end{equation*}
$$

We call the second factor $\vartheta(\lambda)$ the Fermi weight:

$$
\begin{equation*}
\vartheta(\lambda)=\frac{1}{1+\mathrm{e}^{\varepsilon(\lambda) / T}}=\frac{\rho_{\mathrm{p}}(\lambda)}{\rho_{\mathrm{t}}(\lambda)} \tag{2.14}
\end{equation*}
$$

Because the dual fields $\phi_{j}(\lambda)$ commute with each other, we can define the quantity $\operatorname{det}\left(1+(1 / 2 \pi) \hat{V}_{T}\right)$. The integral operator \hat{K}_{T} is defined by

$$
\begin{equation*}
\left(\hat{K}_{T} f\right)(\lambda)=\int_{-\infty}^{\infty} K_{T}(\lambda, \mu) f(\mu) \mathrm{d} \mu \tag{2.15}
\end{equation*}
$$

The integral kernel $K_{T}(\lambda, \mu)$ is defined by $K_{T}(\lambda, \mu)=K(\lambda, \mu) \vartheta(\mu) . K(\lambda, \mu)$ is defined in (1.14). Now we state the results which we will use in the following sections.

Theorem 2.1 (Korepin [6]). In terms of the dual fields $\phi_{j}(\lambda)(j=1, \ldots, 4)$, we can express the expectation value $\langle\exp (\alpha Q(x))\rangle_{T}$ by the Fredholm determinant:

$$
\begin{equation*}
\langle\exp (\alpha Q(x))\rangle_{T}=\frac{\langle 0| \operatorname{det}\left(1+(1 / 2 \pi) \hat{V}_{T}\right)|0\rangle}{\operatorname{det}\left(1-(1 / 2 \pi) \hat{K}_{T}\right)} \tag{2.16}
\end{equation*}
$$

Here the symbol $\operatorname{det}\left(1+(1 / 2 \pi) \hat{V}_{T}\right)$ represents the Fredholm determinant corresponding to the following Fredholm integral equation of the second kind:

$$
\begin{equation*}
\left(\left(1+\frac{1}{2 \pi} \hat{V}_{T}\right) f\right)(\lambda)=g(\lambda) \quad \text { for } \lambda \in(-\infty, \infty) \tag{2.17}
\end{equation*}
$$

The denominator $\operatorname{det}\left(1-(1 / 2 \pi) \hat{K}_{T}\right)$ represents the Fredholm determinant corresponding to the following Fredholm integral equation of the second kind:

$$
\begin{equation*}
\left(\left(1-\frac{1}{2 \pi} \hat{K}_{T}\right) f\right)(\lambda)=g(\lambda) \quad \text { for } \quad \lambda \in(-\infty, \infty) \tag{2.18}
\end{equation*}
$$

3. The small-mass limit of the Bose particle

In this section we will show that in the small-mass limit: $m \rightarrow 0, g \rightarrow \infty$, such that $c=2 m g$ is fixed, a simplification occurs. As explained in the introduction, the scattering matrix depends on the product $c=2 m g$, and not just on g. Therefore the limit of small mass is not a free-fermion limit. We want to emphasize this point. In the sequel we consider the limit of small mass. First we evaluate the solution of the Yang-Yang equation.

$$
\begin{equation*}
\varepsilon(\lambda)=\frac{\lambda^{2}}{2 m}-h-\frac{T}{2 \pi} \int_{-\infty}^{\infty} K(\lambda, \mu) \ln \left(1+\mathrm{e}^{-\varepsilon(\mu) / T}\right) \mathrm{d} \mu \tag{3.1}
\end{equation*}
$$

This is done following [4].
Lemma 3.1. In the small-mass limit of the Bose particle, a solution of the Yang-Yang equation (3.1) is evaluated as

$$
\begin{equation*}
\varepsilon(\lambda)=\frac{\lambda^{2}}{2 m}-h+\mathrm{O}(\sqrt{m}) \tag{3.2}
\end{equation*}
$$

Proof. In [4] Yang and Yang derived the following inequalities:

$$
\begin{equation*}
\frac{\lambda^{2}}{2 m}-h \geqslant \varepsilon(\lambda) \geqslant \frac{\lambda^{2}}{2 m}+x_{0} \tag{3.3}
\end{equation*}
$$

where x_{0} is defined by the integral equation

$$
\begin{equation*}
x_{0}=-h-\frac{T}{2 \pi} \int_{-\infty}^{\infty} K(0, \mu) \ln \left(1+\exp \left(-\frac{1}{T}\left(\frac{\mu^{2}}{2 m}+x_{0}\right)\right)\right) \mathrm{d} u \tag{3.4}
\end{equation*}
$$

The existence of x_{0} is proved in [4]. Let us change the integration variable to $v=\mu / \sqrt{2 m}$. In the limit of small mass, $\sqrt{c g}$ tends to ∞. Therefore we obtain

$$
\begin{align*}
x_{0} & =-h-\frac{T}{\pi} \int_{-\infty}^{\infty} \frac{\sqrt{c g}}{(\sqrt{c g})^{2}+v^{2}} \ln \left(1+\mathrm{e}^{-\left(\nu^{2}+x_{0}\right) / T}\right) \mathrm{d} v \tag{3.5}\\
& =-h+x_{0}-\frac{T}{\pi} \int_{-\infty}^{\infty} \frac{\sqrt{c g}}{(\sqrt{c g})^{2}+v^{2}} \ln \left(\mathrm{e}^{x_{0} / T}+\mathrm{e}^{-\nu^{2} / T}\right) \mathrm{d} v \tag{3.6}\\
& =-h-\frac{T}{\pi} \frac{1}{\sqrt{c g}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ln \left(1+\mathrm{e}^{-\left(\nu^{2}+x_{0}\right) / T}\right) \mathrm{d} v+\mathrm{O}(m) . \tag{3.7}
\end{align*}
$$

When we assume $\left|x_{0}\right| \rightarrow \infty$, this contradicts (3.6). Therefore we can assume that $\left|x_{0}\right|$ is bounded. Therefore, from equation (3.7), we can deduce $x_{0}=-h+\mathrm{O}(\sqrt{m})$.

From lemma 3.1, we can evaluate the Fermi weight $\vartheta(\lambda)$. The Fermi weight $\vartheta(\lambda)$ has a very sharp maximum at $\lambda=0$, from which it decreases very rapidly to 0 . Therefore a simplification occurs. First we consider the dual fields. In what follows we consider the case where the spectral parameters are restricted to $\lambda, \mu \approx \mathrm{O}(\sqrt{m})$. We observe the simplification of the commutation relations:

$$
\left[p_{j}(\lambda), q_{k}(\mu)\right]=\left(\begin{array}{cccc}
0 & 0 & -1 & -1 \tag{3.8}\\
0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0 \\
1 & -1 & 0 & 0
\end{array}\right)_{j, k} \frac{\mathrm{i}}{c}(\mu-\lambda)+\mathrm{O}(m)
$$

Therefore we can identify pairs of fields:

$$
\begin{array}{ll}
p_{1}(\lambda)=-p_{2}(\lambda) & p_{3}(\lambda)=p_{4}(\lambda) \\
q_{1}(\lambda)=-q_{2}(\lambda) & q_{3}(\lambda)=q_{4}(\lambda) \\
\phi_{1}(\lambda)=-\phi_{2}(\lambda) & \phi_{3}(\lambda)=\phi_{4}(\lambda) \tag{3.11}
\end{array}
$$

Furthermore, because the first term of the commutation relation (3.8) is a linear function of the spectral parameters, we can choose a representation of the fields such that $\phi_{j}(\lambda)$ are linear functions of the spectral parameter λ :

$$
\left.\begin{array}{l}
\phi_{j}(\lambda)=\phi_{j}(0)+\phi_{j}^{\prime}(0) \lambda \\
\phi_{j}(0)=p_{j}(0)+q_{j}(0) \tag{3.12}\\
\phi_{j}^{\prime}(0)=p_{j}^{\prime}(0)+q_{j}^{\prime}(0)
\end{array}\right\} \quad(j=1,3)
$$

Here the commutation relations are
$\left[p_{j}(0), q_{k}(0)\right]=0=\left[p_{j}^{\prime}(0), q_{k}^{\prime}(0)\right] \quad(j, k=1,3)$
$\left[p_{1}^{\prime}(0), q_{3}(0)\right]=\frac{\mathrm{i}}{c}=-\left[p_{3}^{\prime}(0), q_{1}(0)\right] \quad\left[p_{3}(0), q_{1}^{\prime}(0)\right]=\frac{\mathrm{i}}{c}=-\left[p_{1}(0), q_{3}^{\prime}(0)\right]$.
The actions on the auxiliary vacuum are

$$
\begin{align*}
& p_{1}(0)|0\rangle=p_{3}(0)|0\rangle=p_{1}^{\prime}(0)|0\rangle=p_{3}^{\prime}(0)|0\rangle=0 \tag{3.15}\\
& \langle 0| q_{1}(0)=\langle 0| q_{3}(0)=\langle 0| q_{1}^{\prime}(0)=\langle 0| q_{3}^{\prime}(0)=0 \tag{3.16}
\end{align*}
$$

Furthermore, we arrive at the following formula.
Theorem 3.2. In the small-mass limit of the Bose particle, the expectation value of the Fredholm determinant simplifies as follows:

$$
\begin{equation*}
\langle 0| \operatorname{det}\left(1+\frac{1}{2 \pi} \hat{V}_{T}\right)|0\rangle \longmapsto\langle 0| \operatorname{det}\left(1+\hat{V}_{0, T}\right)|0\rangle . \tag{3.17}
\end{equation*}
$$

Here the symbol $\hat{V}_{0, T}$ is the integral operator defined by

$$
\begin{equation*}
\left(\hat{V}_{0, T} f\right)(\lambda)=\int_{-\infty}^{\infty} V_{0, T}(\lambda, \mu) f(\mu) \mathrm{d} \mu \tag{3.18}
\end{equation*}
$$

where the integral kernel is defined by product

$$
\begin{equation*}
V_{0, T}(\lambda, \mu)=\left(\frac{\mathrm{e}^{\hat{\alpha}}-1}{\pi}\right) \frac{\sin \frac{1}{2} \hat{x}(\lambda-\mu)}{\lambda-\mu} \vartheta_{0}\left(\frac{\mu}{\sqrt{2 m T}}, \frac{h}{T}\right) \tag{3.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\vartheta_{0}(\mu, \beta)=\frac{1}{1+\mathrm{e}^{\mu^{2}-\beta}} . \tag{3.20}
\end{equation*}
$$

Here we used the abbreviations
$\hat{\alpha}=\alpha+\hat{\alpha}_{p}+\hat{\alpha}_{q} \quad \hat{x}=x+\hat{x}_{p}+\hat{x}_{q}$
$\hat{\alpha}_{p}=2 p_{3}(0) \quad \hat{\alpha}_{q}=2 q_{3}(0) \quad \hat{x}_{p}=-\mathrm{i} p_{1}^{\prime}(0) \quad \hat{x}_{q}=-\mathrm{i} q_{1}^{\prime}(0)$.
The commutation relations and the actions on the auxiliary vacuum become

$$
\begin{align*}
& {\left[\hat{x}_{p}, \hat{\alpha}_{q}\right]=\frac{2}{c} \quad\left[\hat{\alpha}_{p}, \hat{x}_{q}\right]=\frac{2}{c}} \tag{3.23}\\
& \hat{x}_{p}|0\rangle=0=\hat{\alpha}_{p}|0\rangle \quad\langle 0| \hat{x}_{q}=0=\langle 0| \hat{\alpha}_{q} \tag{3.24}
\end{align*}
$$

The dual fields $\hat{\alpha}$ and \hat{x} commute with each other: $[\hat{\alpha}, \hat{x}]=0$.

Proof. From lemma 3.1, the Fermi weight $\vartheta(\lambda)$ has a very sharp maximum at $\lambda=0$ and decreases very rapidly to 0 . When we consider the integral operator \hat{V}_{T}, we can restrict our consideration to the case of the spectral parameters $\lambda, \mu \approx \mathrm{O}(\sqrt{m})$. Therefore we can use the above dual fields simplification. We can identify four dual fields to two dual fields, which are linear in the spectral parameters λ, μ. Furthermore, since the relations $\left[p_{3}^{\prime}(0), \phi_{1}(\lambda)-\phi_{1}(\mu)\right]=0,\left[q_{3}^{\prime}(0), \phi_{1}(\lambda)-\phi_{1}(\mu)\right]=0$ and $\langle 0| q_{3}^{\prime}(0)=0, p_{3}^{\prime}(0)|0\rangle=0$ hold, we can drop $p_{3}^{\prime}(0), q_{3}^{\prime}(0)$ in the expectation value $\langle 0| \operatorname{det}\left(1+(1 / 2 \pi) \hat{V}_{T}\right)|0\rangle$. Next we perform a similarity transformation $\exp \left(\frac{1}{2} \mathrm{i} \lambda\left(x-\mathrm{i} \phi_{1}^{\prime}(0)\right)\right)$ which leaves the Fredholm determinant invariant. Finally we substitute the Fermi weight $\vartheta(\mu)$ by the modified Fermi weight $\vartheta_{0}(\mu / \sqrt{2 m T}, h / T)$. We get the desired formula.

The denominator of the expectation value (2.16) becomes the following one:

$$
\begin{equation*}
\operatorname{det}\left(1-\frac{1}{2 \pi} \hat{K}_{T}\right)=1-\frac{\sqrt{2 T}}{\pi c} d\left(\frac{h}{T}\right) \sqrt{m}+\mathrm{O}(m) \tag{3.25}
\end{equation*}
$$

where we used

$$
\begin{equation*}
d(\beta)=\int_{-\infty}^{\infty} \vartheta_{0}(\mu, \beta) \mathrm{d} \mu \tag{3.26}
\end{equation*}
$$

The density D can be written as
$D=\frac{N}{L}=\int_{-\infty}^{\infty} \rho_{\mathrm{p}}(\mu) \mathrm{d} \mu=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{1+\exp \left(\frac{1}{T}\left(\frac{\mu^{2}}{2 m}-h\right)\right)} \mathrm{d} \mu+\mathrm{O}(m)$.
Therefore we can write

$$
\begin{equation*}
\operatorname{det}\left(1-\frac{1}{2 \pi} \hat{K}_{T}\right)=1-\frac{2}{c} D+\mathrm{O}(m) \tag{3.28}
\end{equation*}
$$

Therefore we arrive at the simplified formula for correlation functions.
Corollary 3.3. In the small-mass limit of the Bose particle, the temperature correlation function simplifies as follows:

$$
\begin{equation*}
\langle\exp (\alpha Q(x))\rangle_{T} \longmapsto\langle 0| \operatorname{det}\left(1+\hat{V}_{0, T}\right)|0\rangle\left(1+\frac{2}{c} D\right) \tag{3.29}
\end{equation*}
$$

Here $D=N / L$ is the density of the thermodynamic limit.

4. Maxwell-Bloch differential equation

In this section we consider the differential equation for the temperature correlation function in the small-mass limit of the Bose particle. In the small-mass limit, the Fredholm determinant $\operatorname{det}\left(1+\hat{V}_{0, T}\right)$ is a τ-function of the Maxwell-Bloch equation, taking values in a commutative subalgebra of the quantum operator algebra. It can easily be seen that after introducing new variables, the auxiliary field \hat{y} and the scaled chemical potential β,

$$
\begin{equation*}
\hat{y}=y+\hat{y}_{p}+\hat{y}_{q} \quad y=\sqrt{\frac{m T}{2}} x \quad \hat{y}_{p}=\sqrt{\frac{m T}{2}} \hat{x}_{p} \quad \hat{y}_{q}=\sqrt{\frac{m T}{2}} \hat{x}_{q} \quad \beta=\frac{h}{T} \tag{4.1}
\end{equation*}
$$

the Fredholm determinant $\operatorname{det}\left(1+\hat{V}_{0, T}\right)$ can be rewritten, after the corresponding change $\lambda \rightarrow \lambda / \sqrt{2 m T}$ of the spectral parameter, as

$$
\begin{equation*}
\operatorname{det}\left(1+\hat{V}_{0, T}\right)=\left.\operatorname{det}(1-\hat{\gamma} \hat{W})\right|_{\hat{\gamma}=(1-\exp (\hat{\alpha})) / \pi} \tag{4.2}
\end{equation*}
$$

We want to emphasize that \hat{y} is an operator in the auxiliary space. The integral operator \hat{W} is defined by

$$
\begin{equation*}
(\hat{W} f)(\lambda)=\int_{-\infty}^{\infty} W(\lambda, \mu) f(\mu) \mathrm{d} \mu \tag{4.3}
\end{equation*}
$$

where the integral kernel $W(\lambda, \mu)$ is given by

$$
\begin{equation*}
W(\lambda, \mu)=\frac{\sin \hat{y}(\lambda-\mu)}{\lambda-\mu} \vartheta_{0}(\mu, \beta) . \tag{4.4}
\end{equation*}
$$

The algebraic structure of the Fredholm determinant $\left.\operatorname{det}(1-\hat{\gamma} \hat{W})\right|_{\hat{\gamma}=(1-\exp (\hat{\alpha})) / \pi}$ has been investigated in the context of correlation functions for the impenetrable Bose gas [1]. It is convenient to introduce the function σ defined by

$$
\begin{equation*}
\sigma(\hat{y}, \beta, \hat{\alpha})=\left.\ln \operatorname{det}(1-\hat{\gamma} \hat{W})\right|_{\hat{\gamma}=(1-\exp (\hat{\alpha})) / \pi} \tag{4.5}
\end{equation*}
$$

The operator σ satisfies the Maxwell-Bloch equation in the case that \hat{y} and $\hat{\alpha}$ are real numbers [1]. In our case, \hat{y} and $\hat{\alpha}$ are quantum operator, but due to the fact that they commute with each other, we can follow the derivation in [1]. Therefore we arrive at the following results. In what follows we use the following operator-derivation notation:

$$
\begin{equation*}
\frac{\partial}{\partial \hat{y}} F(\hat{y}):=\left.\frac{\partial}{\partial z} F(z)\right|_{z=\hat{y}} \tag{4.6}
\end{equation*}
$$

where $F=F(z)$ is a function of z.
Proposition 4.1. The operator $\sigma(\hat{y}, \beta, \hat{\alpha})=\left.\ln \operatorname{det}(1-\hat{\gamma} \hat{W})\right|_{\hat{\gamma}=(1-\exp (\hat{\alpha})) / \pi}$ obeys the following nonlinear partial differential equation:

$$
\begin{equation*}
\left(\frac{\partial}{\partial \beta} \frac{\partial^{2}}{\partial \hat{y}^{2}} \sigma\right)^{2}=-4\left(\frac{\partial^{2}}{\partial \hat{y}^{2}} \sigma\right)\left(2 \hat{y} \frac{\partial}{\partial \beta} \frac{\partial}{\partial \hat{y}} \sigma+\left(\frac{\partial}{\partial \beta} \frac{\partial}{\partial \hat{y}} \sigma\right)^{2}-2 \frac{\partial}{\partial \beta} \sigma\right) \tag{4.7}
\end{equation*}
$$

with the initial conditions

$$
\begin{align*}
& \sigma=-\left(\frac{1-\mathrm{e}^{\hat{\alpha}}}{\pi} d(\beta)\right) \hat{y}-\left(\frac{1-\mathrm{e}^{\hat{\alpha}}}{\pi} d(\beta)\right)^{2} \frac{\hat{y}^{2}}{2}+\mathrm{O}\left(\hat{y}^{3}\right) \tag{4.8}\\
& \lim _{\beta \rightarrow-\infty} \sigma(\hat{y}, \beta, \hat{\alpha})=0 \tag{4.9}
\end{align*}
$$

where the scalar function $d(\beta)$ is defined in (3.26).
These initial data fix the solution uniquely. The nonlinear differential equation (4.7) is called the Maxwell-Bloch equation [5]. Algebraically, it is known that at $T=0$ the operator σ depends only on product of variables $\hat{y} \sqrt{\beta}$ [6]. We set $\tau=\hat{y} \sqrt{\beta}=\sqrt{m h / 2} \hat{x}$. Equation (4.7) is rewritten at $T=0$ for the operator

$$
\begin{equation*}
\sigma_{0}(\tau)=\left.\tau \frac{\mathrm{d}}{\mathrm{~d} \tau} \ln \operatorname{det}(1-\hat{\gamma} \hat{W})\right|_{\hat{\gamma}=(1-\exp (\hat{\alpha})) / \pi} \tag{4.10}
\end{equation*}
$$

as

$$
\begin{equation*}
\left(\tau \frac{\mathrm{d}^{2} \sigma_{0}}{\mathrm{~d} \tau^{2}}\right)^{2}=-4\left(\tau \frac{\mathrm{~d} \sigma_{0}}{\mathrm{~d} \tau}-\sigma_{0}\right)\left(4 \tau \frac{\mathrm{~d} \sigma_{0}}{\mathrm{~d} \tau}+\left(\frac{\mathrm{d} \sigma_{0}}{\mathrm{~d} \tau}\right)^{2}-4 \sigma_{0}\right) \tag{4.11}
\end{equation*}
$$

This ordinary differential equation is the fifth Painlevé equation in [7]. Actually, rewriting (4.11) in terms of the function $y_{0}(\tau)$ defined by
$\sigma_{0}(\tau)=-4 \mathrm{i} \tau u_{0}(\tau)+\frac{u_{0}(\tau)^{2}}{y_{0}(\tau)}\left(y_{0}(\tau)-1\right)^{2} \quad u_{0}(\tau)=\frac{4 \mathrm{i} \tau y_{0}(\tau)-\tau \mathrm{d} y_{0}(\tau) / \mathrm{d} \tau}{2\left(y_{0}(\tau)-1\right)^{2}}$
we can get the familiar formula of the fifth Painleve differential equation for the function $w(\tau)=y_{0}\left(\frac{1}{2} \tau\right):$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} w}{\mathrm{~d} \tau^{2}}=\left(\frac{\mathrm{d} w}{\mathrm{~d} \tau}\right)^{2} \frac{3 w-1}{2 w(w-1)}+\frac{2 w(w+1)}{w-1}+\frac{2 \mathrm{i} w}{\tau}-\frac{1}{\tau} \frac{\mathrm{~d} w}{\mathrm{~d} \tau} \tag{4.13}
\end{equation*}
$$

Next we derive the asymptotics of $\sigma(\hat{y}, \beta, \hat{\alpha})=\left.\ln \operatorname{det}(1-\hat{\gamma} \hat{W})\right|_{\hat{\gamma}=(1-\exp (\hat{\alpha})) / \pi}$. By means of the Riemann-Hilbert method, the asymptotics of σ are derived for the case where \hat{y} and $\hat{\alpha}$ are real numbers [1]. The idea of the Riemann-Hilbert method is due to Professor A R Its. In our case, \hat{y} and $\hat{\alpha}$ are quantum operators, but due to the fact that they commute, we can follow the derivation in [1]. We arrive at the following asymptotics.

Proposition 4.2. The asymptotics of the operator $\sigma(\hat{y}, \beta, \hat{\alpha})$ for large \hat{y} become the following:

$$
\begin{align*}
\sigma(\hat{y}, \beta, \hat{\alpha})= & -\hat{y} C(\beta, \hat{\alpha})+\frac{1}{2} \int_{-\infty}^{\beta}\left(\frac{\partial C(b, \hat{\alpha})}{\partial b}\right)^{2} \mathrm{~d} b \\
& -\frac{1}{8} \frac{\left(\mathrm{e}^{-\hat{\alpha}}-1\right)^{2}}{r_{1}(\hat{\alpha})^{4}\left|a\left(\lambda_{1}(\hat{\alpha}), \hat{\alpha}\right)\right|^{4}} \exp \left(-4 r_{1}(\hat{\alpha}) \sin \varphi_{1}(\hat{\alpha}) \hat{y}\right) \\
& \times\left(\frac{1}{\sin ^{2} \varphi_{1}(\hat{\alpha})}+\cos \left\{4 \hat{y} r_{1}(\hat{\alpha}) \cos \varphi_{1}(\hat{\alpha})-4 \arg a\left(\lambda_{1}(\hat{\alpha}), \hat{\alpha}\right)-4 \varphi_{1}(\hat{\alpha})\right\}\right) \\
& +\mathrm{o}\left(\exp \left(-4 r_{1}(\hat{\alpha}) \sin \varphi_{1}(\hat{\alpha}) \hat{y}\right)\right) . \tag{4.14}
\end{align*}
$$

Here we set
$C(\beta, \alpha)=\frac{1}{\pi} \int_{-\infty}^{\infty} \ln \left(\frac{1+\mathrm{e}^{\mu^{2}-\beta}}{\mathrm{e}^{\alpha}+\mathrm{e}^{\mu^{2}-\beta}}\right) \mathrm{d} \mu$
$\lambda_{1}(\alpha)=\sqrt{\alpha+\beta+\pi \mathrm{i}} \quad r_{1}(\alpha)=\left|\lambda_{1}(\alpha)\right| \quad \varphi_{1}(\alpha)=\arg \lambda_{1}(\alpha)$
$a(\lambda, \alpha)=\exp \left\{\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{\infty} \frac{\mathrm{d} \mu}{\mu-\lambda} \ln \left(\frac{1+\mathrm{e}^{\mu^{2}-\beta}}{\mathrm{e}^{\alpha}+\mathrm{e}^{\mu^{2}-\beta}}\right)\right\}$.

5. Evaluation of the mean value

In this section we evaluate the vacuum expectation value of the operator $\operatorname{det}(1-$ $\hat{\gamma} \hat{W})\left.\right|_{\hat{\gamma}=(1-\exp (\hat{\alpha})) / \pi}$ for $y=\sqrt{m T / 2} x \rightarrow+\infty$. From corollary 4.2, we deduce

$$
\begin{align*}
\langle 0| \operatorname{det}(1-\hat{\gamma} & \hat{W})\left.\right|_{\hat{\gamma}=(1-\exp (\hat{\alpha})) / \pi}|0\rangle \\
= & \langle 0| A(\beta, \hat{\alpha}) \mathrm{e}^{-C(\beta, \hat{\alpha}) \hat{y}}+B(\beta, \hat{\alpha}) \exp \left(-\left\{C(\beta, \hat{\alpha})+4 r_{1}(\hat{\alpha}) \sin \varphi_{1}(\hat{\alpha})\right\} \hat{y}\right) \\
& +G(\beta, \hat{\alpha}) \exp \left(\left\{-C(\beta, \hat{\alpha})+4 \mathrm{i} \lambda_{1}(\hat{\alpha})\right\} \hat{y}\right) \\
& +H(\beta, \hat{\alpha}) \exp \left(\left\{-C(\beta, \hat{\alpha})-4 \mathrm{i} \lambda_{1}^{*}(\hat{\alpha})\right\} \hat{y}\right)|0\rangle+\cdots \tag{5.1}
\end{align*}
$$

Here we set

$$
\begin{align*}
& A(\beta, \alpha)=\exp \left\{\frac{1}{2} \int_{-\infty}^{\beta}\left(\frac{\partial C(b, \alpha)}{\partial b}\right)^{2} \mathrm{~d} b\right\} \tag{5.2}\\
& B(\beta, \alpha)=-\frac{\left(\mathrm{e}^{-\alpha}-1\right)^{2}}{8 r_{1}(\alpha)^{4} \sin ^{2} \varphi_{1}(\alpha)}\left(\frac{a\left(\lambda_{1}^{*}(\alpha), \alpha\right)}{a\left(\lambda_{1}(\alpha), \alpha\right)}\right)^{2} A(\beta, \alpha) \tag{5.3}\\
& G(\beta, \alpha)=-\frac{\left(\mathrm{e}^{-\alpha}-1\right)^{2}}{16} \frac{1}{\lambda_{1}(\alpha)^{4} a\left(\lambda_{1}(\alpha), \alpha\right)^{4}} A(\beta, \alpha) \tag{5.4}\\
& H(\beta, \alpha)=-\frac{\left(\mathrm{e}^{-\alpha}-1\right)^{2}}{16} \frac{a\left(\lambda_{1}^{*}(\alpha), \alpha\right)^{4}}{\lambda_{1}^{*}(\alpha)^{4}} A(\beta, \alpha) \tag{5.5}
\end{align*}
$$

where $C(\beta, \alpha), \lambda_{1}(\alpha), r_{1}(\alpha), \varphi_{1}(\alpha)$ and $a(\lambda, \alpha)$ are defined in (4.15), (4.16) and (4.17). $\lambda_{1}^{*}(\alpha)$ is the complex conjugation of $\lambda_{1}(\alpha)$, i.e.

$$
\begin{equation*}
\lambda_{1}^{*}(\alpha)=\sqrt{\alpha+\beta-\pi \mathrm{i}} . \tag{5.6}
\end{equation*}
$$

$H(\beta, \alpha)$ is the complex conjugation of $G(\beta, \alpha)$.
In this section we evaluate the right-hand of the above vacuum expectation value. For the convenience of the reader we summarize below the commutation relations of the quantum operators:
$\hat{y}=y+\hat{y}_{p}+\hat{y}_{q} \quad y=\sqrt{\frac{m T}{2}} x, \hat{y}_{p}=\sqrt{\frac{m T}{2}} \hat{x}_{p} \quad \hat{y}_{q}=\sqrt{\frac{m T}{2}} \hat{x}_{q}$
$\hat{\alpha}=\alpha+\hat{\alpha}_{p}+\hat{\alpha}_{q} \quad \beta=\frac{h}{T}$
$\left[\hat{y}_{p}, \hat{\alpha}_{q}\right]=\frac{\sqrt{2 m T}}{c}=\left[\hat{\alpha}_{p}, \hat{y}_{q}\right] \quad \hat{y}_{p}|0\rangle=0=\hat{\alpha}_{p}|0\rangle \quad\langle 0| \hat{y}_{q}=0=\langle 0| \hat{\alpha}_{q}$.
The following proposition is the key to calculating the vacuum expectation value.
Proposition 5.1. The following asymptotic formula holds at large $y \rightarrow+\infty$:

$$
\begin{equation*}
\langle 0| \mathrm{e}^{\hat{y} E(\hat{\alpha})} F(\hat{\alpha})|0\rangle=F\left(\alpha+\frac{\sqrt{2 m T}}{c} E(\alpha)\right) \mathrm{e}^{y E(\alpha)}+\cdots \tag{5.10}
\end{equation*}
$$

Here $E(\alpha)$ and $F(\alpha)$ are meromorphic functions of α.
Proof. In this proof we use the following abbreviations:

$$
\begin{equation*}
\delta=\frac{\sqrt{2 m T}}{c} \quad A_{0}+A_{1} \hat{\alpha}_{q}+A_{2}{\hat{\alpha_{q}}}^{2}+\cdots=E\left(\alpha+\hat{\alpha}_{q}\right) \tag{5.11}
\end{equation*}
$$

First we expand the exponential function and use the relations $\langle 0| \hat{y}_{q}=0, \hat{\alpha}_{p}|0\rangle=0$ and $\left[\hat{\alpha}_{p}, \hat{\alpha}_{q}\right]=0$. We obtain
$\mathrm{EV}:=\langle 0| F(\hat{\alpha}) \exp \{\hat{y} E(\hat{\alpha})\}|0\rangle=\langle 0| \sum_{n=0}^{\infty} \frac{1}{n!}\left(y+\hat{y}_{p}\right)^{n}\left(E\left(\alpha+\hat{\alpha}_{q}\right)\right)^{n} F(\hat{\alpha})|0\rangle$.
We expand

$$
\begin{equation*}
\left(E\left(\alpha+\hat{\alpha}_{q}\right)\right)^{n}=\left(A_{0}+A_{1} \hat{\alpha}_{q}+{A_{2}}_{{\hat{\alpha_{q}}}^{2}}+\cdots\right)^{n} \tag{5.13}
\end{equation*}
$$

and using the commutation relation

$$
\begin{equation*}
\langle 0|\left[f\left(\hat{y}_{p}\right), \hat{\alpha}_{q}^{k}\right]=\delta^{k}\langle 0| f^{(k)}\left(\hat{y}_{p}\right) \tag{5.14}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& \mathrm{EV}=\langle 0| \sum_{n=0}^{\infty} \frac{1}{n!}\left(y+\hat{y}_{p}\right)^{n} \sum_{\substack{m_{0}+m_{1}+m_{2}+\cdots=n \\
m_{j} \geqslant 0}} \frac{n!}{m_{0}!m_{1}!m_{2}!\cdots} A_{0}^{m_{0}} A_{1}^{m_{1}} A_{2}^{m_{2}} \cdots \\
& \times \hat{\alpha}_{q}^{m_{1}+2 m_{2}+3 m_{3}+\cdots} F(\hat{\alpha})|0\rangle \tag{5.15}\\
&=\langle 0| \sum_{n=0}^{\infty} \sum_{\substack{m_{0}+m_{1}+m_{2}+\cdots=n \\
m_{j} \geqslant 0}} \frac{n!}{m_{0}!m_{1}!m_{2}!\cdots} \delta^{m_{1}+2 m_{2}+3 m_{3}+\cdots} \\
& \times\left(y+\hat{y}_{p}\right)^{n-\left(m_{1}+2 m_{2}+3 m_{3}+\cdots\right)} \\
& \times A_{0}^{m_{0}} A_{1}^{m_{1}} A_{2}^{m_{2}} \cdots \frac{n(n-1) \cdots\left(n+1-\left(m_{1}+2 m_{2}+3 m_{3}+\cdots\right)\right)}{n!} F(\hat{\alpha})|0\rangle . \tag{5.16}
\end{align*}
$$

Using the relation

$$
\begin{equation*}
\frac{1}{2 \pi \mathrm{i}} \oint \frac{\mathrm{e}^{t}}{t^{n-k+1}} \mathrm{~d} t=\frac{n(n-1) \cdots(n-k+1)}{n!}=\frac{1}{(n-k)!} \tag{5.17}
\end{equation*}
$$

we can factor as follows:

$$
\begin{align*}
\mathrm{EV} & =\langle 0| \sum_{n=0}^{\infty} \frac{1}{2 \pi \mathrm{i}} \oint \frac{\mathrm{e}^{t}}{t}\left(\frac{A_{0}\left(y+\hat{y}_{p}\right)}{t}+A_{1} \delta+\frac{A_{2} \delta^{2} t}{y+\hat{y}_{p}}+\frac{A_{3} \delta^{3} t^{2}}{\left(y+\hat{y}_{p}\right)^{2}}+\cdots\right)^{n} F(\hat{\alpha})|0\rangle \tag{5.18}\\
& =\langle 0| \sum_{n=0}^{\infty} \frac{1}{2 \pi \mathrm{i}} \oint \frac{\mathrm{e}^{t}}{t}\left(\frac{A_{0}\left(y+\hat{y}_{p}\right)}{t}\right)^{n} F(\hat{\alpha})|0\rangle+\cdots \quad \text { for } y \rightarrow+\infty . \tag{5.19}
\end{align*}
$$

Using the relations

$$
\begin{equation*}
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots \quad f(z)=\frac{1}{2 \pi \mathrm{i}} \oint \frac{f(t)}{t-z} \mathrm{~d} t \tag{5.20}
\end{equation*}
$$

we obtain the following:
$\mathrm{EV}=\langle 0| \frac{1}{2 \pi \mathrm{i}} \oint \frac{\mathrm{e}^{t}}{t-A_{0}\left(y+\hat{y}_{p}\right)} F(\hat{\alpha})|0\rangle+\cdots=\langle 0| \mathrm{e}^{A_{0}\left(y+\hat{y}_{p}\right)} F(\hat{\alpha})|0\rangle+\cdots$.
Using the relation $\mathrm{e}^{A} B \mathrm{e}^{-A}=\mathrm{e}^{a d(A)}(B)$, we obtain

$$
\begin{equation*}
\mathrm{e}^{E(\alpha) \hat{y}_{p}} F(\hat{\alpha}) \mathrm{e}^{-E(\alpha) \hat{y}_{p}}=\mathrm{e}^{E(\alpha) a d\left(\hat{y}_{p}\right)} F(\hat{\alpha})=\left.\exp \left(E(\alpha) \frac{\sqrt{2 m T}}{c} \frac{\partial}{\partial a}\right) F(a)\right|_{a=\hat{\alpha}} . \tag{5.22}
\end{equation*}
$$

Therefore we can drop the quantum operators in the expectation value:

$$
\begin{align*}
\mathrm{EV} & =\left.\mathrm{e}^{y E(\alpha)}\langle 0| \exp \left(E(\alpha) \frac{\sqrt{2 m T}}{c} \frac{\partial}{\partial a}\right) F(a)\right|_{a=\hat{\alpha}} \mathrm{e}^{E(\alpha) \hat{y}_{p}}|0\rangle+\cdots \\
& =\left.\exp \left(E(\alpha) \frac{\sqrt{2 m T}}{c} \frac{\partial}{\partial a}\right) F(a)\right|_{a=\alpha}+\cdots \tag{5.23}
\end{align*}
$$

Here we have used the relations $\langle 0| \hat{\alpha}_{q}=0=\hat{\alpha}_{p}|0\rangle, \quad \hat{y}_{p}|0\rangle=0$.
Because the exponential of derivation is a shift operator:

$$
\begin{equation*}
\exp \left(w \frac{\partial}{\partial z}\right) f(z)=f(z+w) \tag{5.24}
\end{equation*}
$$

we arrive at (5.10).
Now, we arrive at the following theorem.
Theorem 5.2. The leading terms of the asymptotics of the expectation value behave exponentially as follows.

$$
\begin{align*}
\langle 0| \operatorname{det}(1-\hat{\gamma} & \hat{W})\left.\right|_{\hat{\gamma}=(1-\exp (\hat{\alpha})) / \pi}|0\rangle=A\left(\beta, \alpha-\frac{\sqrt{2 m T}}{c} C(\beta, \alpha)\right) \mathrm{e}^{-C(\beta, \alpha) y} \\
& +B\left(\beta, \alpha-\frac{\sqrt{2 m T}}{c}\left\{C(\beta, \alpha)+4 r_{1}(\alpha) \sin \varphi_{1}(\alpha)\right\}\right) \\
& \times \exp \left(-\left\{C(\beta, \alpha)+4 r_{1}(\alpha) \sin \varphi_{1}(\alpha)\right\} y\right) \\
& +G\left(\beta, \alpha+\frac{\sqrt{2 m T}}{c}\left\{-C(\beta, \alpha)+4 \mathrm{i} \lambda_{1}(\alpha)\right\}\right) \exp \left(\left\{-C(\beta, \alpha)+4 \mathrm{i} \lambda_{1}(\alpha)\right\} y\right) \\
& +H\left(\beta, \alpha+\frac{\sqrt{2 m T}}{c}\left\{-C(\beta, \alpha)-4 \mathrm{i} \lambda_{1}^{*}(\alpha)\right\}\right) \\
& \times \exp \left(\left\{-C(\beta, \alpha)-4 \mathrm{i} \lambda_{1}^{*}(\alpha)\right\} y\right)+\cdots \tag{5.25}
\end{align*}
$$

Here $A(\beta, \alpha), B(\beta, \alpha), G(\beta, \alpha)$ and $H(\beta, \alpha)$ are defined in (5.2), (5.3), (5.4) and (5.5).
Proof. Applying proposition 5.1 to (5.1), we arrive at the result.
When we consider $c=\infty$, theorem 5.2 coincides with the asymptotics results for the impenetrable Bose gas case [1].

Corollary 5.3. In the limit $m \rightarrow 0, g \rightarrow \infty, x \rightarrow \infty$ such that $c=2 m g$ fixed and $\sqrt{m} x \rightarrow \infty$, the leading terms of asymptotics of the expectation value become

$$
\begin{aligned}
\langle j(x) j(0)\rangle_{T} & \rightarrow D^{2}+\frac{m T}{2}\left(B_{0}(\beta)+B_{1}(\beta) \sqrt{\frac{m T}{2}} x+B_{2}(\beta)\left(\sqrt{\frac{m T}{2}} x\right)^{2}\right) \\
& \times \exp \left\{-4 r_{1}(0) \sin \varphi_{1}(0) \sqrt{\frac{m T}{2}} x\right\} \\
& +\frac{m T}{2}\left(G_{0}(\beta)+G_{1}(\beta) \sqrt{\frac{m T}{2}} x+G_{2}(\beta)\left(\sqrt{\frac{m T}{2}} x\right)^{2}\right) \\
& \times \exp \left\{4 \mathrm{i} \lambda_{1}(0) \sqrt{\frac{m T}{2}} x\right\}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{m T}{2}\left(H_{0}(\beta)+H_{1}(\beta) \sqrt{\frac{m T}{2}} x+H_{2}(\beta)\left(\sqrt{\frac{m T}{2}} x\right)^{2}\right) \\
& \times \exp \left\{-4 \mathrm{i} \lambda_{1}^{*}(0) \sqrt{\frac{m T}{2}} x\right\}+\cdots \tag{5.26}
\end{align*}
$$

Here $D=N / L$ is the density of the thermodynamics and $\beta=h / T$. Here $B_{j}(\beta), G_{j}(\beta)$ and $H_{j}(\beta),(j=0,1,2)$ are functions of $\beta . H_{j}(\beta)(j=0,1,2)$ is the complex conjugation of $G_{j}(\beta)(j=0,1,2)$, i.e. $H_{j}(\beta)=G_{j}^{*}(\beta)$. Explicit formulae for $B_{j}(\beta), G_{j}(\beta)$ and $H_{j}(\beta)(j=0,1,2)$ are summarized in the appendix.

Proof. From corollaries 3.3, 5.3 and the relation

$$
\begin{equation*}
\langle j(x) j(0)\rangle_{T}=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left\langle Q(x)^{2}\right\rangle_{T}=\left.\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \frac{\partial^{2}}{\partial \alpha^{2}}\langle\exp (\alpha Q(x))\rangle_{T}\right|_{\alpha=0} \tag{5.27}
\end{equation*}
$$

we can derive the result. For example the constant D^{2} is derived by

$$
\begin{equation*}
D^{2}=\left.\left(1+\frac{2}{c} D\right) \frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} \frac{\partial^{2}}{\partial \alpha^{2}} A\left(\beta, \alpha-\frac{\sqrt{2 m T}}{c} C(\beta, \alpha)\right) \mathrm{e}^{-C(\beta, \alpha) y}\right|_{\alpha=0}+\cdots \tag{5.28}
\end{equation*}
$$

Korepin [8] proposed a method of presenting correlation functions in the form of special series. This method is useful in the calculation of the long-distance asymptotics. Bogoliubov and Korepin [9] considered the asymptotics of correlation functions for the penetrable Bose gas by the special series method. Corollary 5.3 coincides with the result of [9]. For the impenetrable Bose gas case $(c=\infty)$, Korepin and Slavnov [10] calculated higher-order corrections and derived pre-exponential polynomials by the special series method. In this paper we derived pre-exponential polynomials for penetrable Bose gas case ($0<c<+\infty$) by using the determinant representation.

Acknowledgments

We wish to thank Dr J-U H Petersen for correcting the English of our paper. This work is partly supported by the National Science Foundation (NSF) under Grants No PHY-9321165 and the Japan Society for the Promotion of Science.

Appendix

In this appendix we summarize the asymptotics of the density-density correlation function. We use the notation given in corollary 5.3. In what follows, we use the following abbreviations:

$$
\begin{equation*}
\lambda_{1}=\lambda_{1}(0)=\sqrt{\beta+\pi \mathrm{i}} \quad r_{1}=\left|\lambda_{1}\right|=\left|\lambda_{1}(0)\right| \quad \varphi_{1}=\arg \lambda_{1}=\arg \lambda_{1}(0) \tag{A.1}
\end{equation*}
$$

First we summarize the coefficients of $\exp \left\{-4 r_{1} \sin \varphi_{1} \sqrt{m T / c} x\right\}$:

$$
\begin{equation*}
\frac{m T}{2}\left(B_{0}(\beta)+B_{1}(\beta) \sqrt{\frac{m T}{2}} x+B_{2}(\beta)\left(\sqrt{\frac{m T}{2}} x\right)^{2}\right) \exp \left\{-4 r_{1} \sin \varphi_{1} \sqrt{\frac{m T}{2}} x\right\} \tag{A.2}
\end{equation*}
$$

The functions $B_{j}(\beta)$ are given by

$$
\begin{equation*}
B_{j}(\beta)=\tilde{B}_{j}(\beta)\left(1+\frac{2}{c} D\right) \quad(j=0,1,2) \tag{A.3}
\end{equation*}
$$

where the $\tilde{B}_{j}(\beta)$ are given by

$$
\begin{align*}
\tilde{B}_{2}(\beta)=16 r_{1}^{2} & \sin ^{2} \varphi_{1}\left(\frac{d(\beta)}{\pi}+\frac{2 \sin \varphi_{1}}{r_{1}}\right)^{2} \times B\left(\beta,-4 \Delta r_{1} \sin \varphi_{1}\right) \tag{A.4}\\
\tilde{B}_{1}(\beta)=32 r_{1}^{2} & \sin ^{2} \varphi_{1}\left(\frac{d(\beta)}{\pi}+\frac{2 \sin \varphi_{1}}{r_{1}}\right)\left(1+\Delta\left(\frac{d(\beta)}{\pi}+\frac{2 \sin \varphi_{1}}{r_{1}}\right)\right) \\
& \times\left(\frac{\partial B}{\partial \alpha}\right)\left(\beta,-4 \Delta r_{1} \sin \varphi_{1}\right) \\
& -4 r_{1} \sin \varphi_{1}\left\{\left(\frac{2 d(\beta)}{\pi}\right)^{2}+\frac{16 \sin \varphi_{1}}{\pi r_{1}} d(\beta)-\frac{4 r_{1} \sin \varphi_{1}}{\pi}\left(\frac{\partial d}{\partial \beta}\right)(\beta)\right. \\
& \left.+\frac{4 \sin ^{2} \varphi_{1}}{r_{1}^{2}}\left(5+\cos 2 \varphi_{1}\right)\right\} \times B\left(\beta,-4 \Delta r_{1} \sin \varphi_{1}\right) \tag{A.5}\\
\tilde{B}_{0}(\beta)=16 r_{1}^{2} & \sin ^{2} \varphi_{1}\left\{1+\Delta\left(\frac{d(\beta)}{\pi}+\frac{2 \sin \varphi_{1}}{r_{1}}\right)\right\}^{2} \times\left(\frac{\partial^{2} B}{\partial \alpha^{2}}\right)\left(\beta,-4 \Delta r_{1} \sin \varphi_{1}\right) \\
& -4 r_{1} \sin \varphi_{1}\left[\frac{4 d(\beta)}{\pi}+\frac{8 \sin \varphi_{1}}{r_{1}}+\Delta\left\{\left(\frac{2 d(\beta)}{\pi}\right)^{2}+\frac{16 \sin \varphi_{1}}{\pi r_{1}} d(\beta)\right.\right. \\
& \left.\left.-\frac{4 r_{1} \sin \varphi_{1}}{\pi}\left(\frac{\partial d}{\partial \beta}\right)(\beta)+\frac{4 \sin ^{2} \varphi_{1}}{r_{1}^{2}}\left(5+\cos 2 \varphi_{1}\right)\right\}\right] \\
& \times\left(\frac{\partial B}{\partial \alpha}\right)\left(\beta,-4 \Delta r_{1} \sin \varphi_{1}\right) \\
& +2\left\{\left(\frac{d(\beta)}{\pi}\right)^{2}+\frac{4 \sin \varphi_{1}}{\pi r_{1}} d(\beta)-\frac{4 r_{1} \sin \varphi_{1}}{\pi}\left(\frac{\partial d}{\partial \beta}\right)(\beta)+\frac{4 \sin 2}{r_{1}^{2}}\right\} \varphi_{1} \\
& \times B\left(\beta,-4 \Delta r_{1} \sin \varphi_{1}\right) \tag{A.6}\\
&
\end{align*}
$$

Here we used the abbreviations

$$
\begin{equation*}
\Delta=\frac{\sqrt{2 m T}}{c} \quad d(\beta)=\int_{-\infty}^{\infty} \frac{1}{1+\mathrm{e}^{\mu^{2}-\beta}} \mathrm{d} \mu \quad \beta=\frac{h}{T} \tag{A.7}
\end{equation*}
$$

and the function $B(\beta, \alpha)$ as defined in (5.3).
Next we summarize the coefficients of $\exp \left\{4 \mathrm{i} \lambda_{1} \sqrt{m T / 2} x\right\}$:

$$
\begin{equation*}
\frac{m T}{2}\left(G_{0}(\beta)+G_{1}(\beta) \sqrt{\frac{m T}{2}} x+G_{2}(\beta)\left(\sqrt{\frac{m T}{2}} x\right)^{2}\right) \exp \left\{4 \mathrm{i} \lambda_{1} \sqrt{\frac{m T}{2}} x\right\} \tag{A.8}
\end{equation*}
$$

The functions $G_{j}(\beta)$ are given by

$$
\begin{equation*}
G_{j}(\beta)=\tilde{G}_{j}(\beta)\left(1+\frac{2}{c} D\right) \quad(j=0,1,2) \tag{A.9}
\end{equation*}
$$

where $\tilde{G}_{j}(\beta)$ are given by

$$
\begin{align*}
& \tilde{G}_{2}(\beta)=-16 \lambda_{1}^{2}\left(\frac{d(\beta)}{\pi}+\frac{2 \mathrm{i}}{\lambda_{1}}\right)^{2} \times G\left(\beta, 4 \Delta i \lambda_{1}\right) \tag{A.10}\\
& \tilde{G}_{1}(\beta)=-32 \lambda_{1}^{2}\left(\frac{d(\beta)}{\pi}+\frac{2 \mathrm{i}}{\lambda_{1}}\right)\left(1+\Delta\left(\frac{d(\beta)}{\pi}+\frac{2 \mathrm{i}}{\lambda_{1}}\right)\right) \times\left(\frac{\partial G}{\partial \alpha}\right)\left(\beta, 4 \Delta i \lambda_{1}\right) \\
&+4 \mathrm{i} \lambda_{1}\left\{\left(\frac{2 d(\beta)}{\pi}\right)^{2}+\frac{16 \mathrm{i}}{\pi \lambda_{1}} d(\beta)+\frac{4 \mathrm{i} \lambda_{1}}{\pi}\left(\frac{\partial d}{\partial \beta}\right)(\beta)-\frac{12}{\lambda_{1}^{2}}\right\} \\
& \times G\left(\beta, 4 \Delta \mathrm{i} \lambda_{1}\right) \tag{A.11}\\
& \tilde{G}_{0}(\beta)=-16 \lambda_{1}^{2}\left\{1+\Delta\left(\frac{d(\beta)}{\pi}+\frac{2 \mathrm{i}}{\lambda_{1}}\right)\right\}^{2} \times\left(\frac{\partial^{2} G}{\partial \alpha^{2}}\right)\left(\beta, 4 \Delta \mathrm{i} \lambda_{1}\right) \\
&+4 \mathrm{i} \lambda_{1}\left[\frac{4 d(\beta)}{\pi}+\frac{8 \mathrm{i}}{\lambda_{1}}+\Delta\left\{\left(\frac{2 d(\beta)}{\pi}\right)^{2}+\frac{16 \mathrm{i}}{\pi \lambda_{1}} d(\beta)\right.\right. \\
&\left.\left.+\frac{4 \mathrm{i} \lambda_{1}}{\pi}\left(\frac{\partial d}{\partial \beta}\right)(\beta)-\frac{12}{\lambda_{1}^{2}}\right\}\right] \times\left(\frac{\partial G}{\partial \alpha}\right)\left(\beta, 4 \Delta \mathrm{i} \lambda_{1}\right) \\
&+2\left\{\left(\frac{d(\beta)}{\pi}\right)^{2}+\frac{4 \mathrm{i}}{\pi \lambda_{1}} d(\beta)+\frac{4 \mathrm{i} \lambda_{1}}{\pi}\left(\frac{\partial d}{\partial \beta}\right)(\beta)\right\} \times G\left(\beta, 4 \Delta \mathrm{i} \lambda_{1}\right) \tag{A.12}
\end{align*}
$$

Here the function $G(\beta, \alpha)$ is defined in (5.4). Next we summarize the coefficients of $\exp \left\{-4 \mathrm{i} \lambda_{1}^{*} \sqrt{m T / 2} x\right\}$:

$$
\begin{equation*}
\frac{m T}{2}\left(H_{0}(\beta)+H_{1}(\beta) \sqrt{\frac{m T}{2}} x+H_{2}(\beta)\left(\sqrt{\frac{m T}{2}} x\right)^{2}\right) \exp \left\{-4 i \lambda_{1}^{*} \sqrt{\frac{m T}{2}} x\right\} \tag{A.13}
\end{equation*}
$$

where $\lambda_{1}^{*}=\sqrt{\beta-\pi \mathrm{i}}$. The functions $H_{j}(\beta)$ are given by the complex conjugation of $G_{j}(\beta)$.

$$
\begin{equation*}
H_{j}(\beta)=G_{j}^{*}(\beta) \quad(j=0,1,2) \tag{A.14}
\end{equation*}
$$

Beferences

[1] Korepin V E, Bogoliubov N M and Izergin A G 1993 Quantum Inverse Scattering Method and Correlation Functions (Cambridge Monographs on Mathematical Physics) (Cambridge: Cambridge University Press)
[2] Lieb E H and Liniger W 1963 Exact analysis of an interacting Bose gas I. The general solution and the ground state Phys. Rev. 130 1605-16
[3] Lieb E H 1963 Exact analysis of an interacting Bose gas II. The excitation spectrum Phys. Rev. 130 1616-34
[4] Yang C N and Yang C P 1969 Thermodynamics of a one dimensional systems of bosons with repulsive delta-function interactions J. Math. Phys. 10 1122-52
[5] Burtsev S P, Gatitov I R and Zakharov V E 1988 Maxwell-Bloch system with pumping Plasma Theory and Nonlinear and Turbulent Processes in Physics vol 2 (Singapore: World Scientific) pp 897-905
[6] Korepin V E 1989 Generating functional of correlation functions for the nonlinear Schrödinger equation Funct. Analiz. Prilozh. 23 15-23 (in Russian)
[7] Jimbo M, Miwa T, Môri Y and Sato M 1980 Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent Physica 1D 80-158
[8] Korepin V E 1984 Correlation functions of the one dimensional Bose Gas in the repulsive case Commun. Math. Phys. 94 93-113
[9] Bogoliubov N M and Korepin V E 1985 Correlation length of the one-dimensional Bose gas Nucl. Phys. B [FS14] 766-78
[10] Korepin V E and Slavnov N A 1986 Correlation function of currents in a one-dimensional Bose gas Theor. Math. Phys. 68 955-60
[11] Frenkel I B and Jing N 1988 Vertex representations of quantum affine algebras Proc. Natl Acad. Sci. USA 85 9373-7
[12] Essler F H, Frahm H, Its A R and Korepin V E 1996 Painlevé transcendent describes quantum correlation function of the $X X Z$ antiferromagnet away from the free-fermion point Yukawa preprint YITP-96-13, solv-int/9604005

